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H I G H L I G H T S  

• Investigate range and total cost of ownership of BEVs using comprehensive 2019 U.S. driving data on the Lyft platform. 
• 86% of drivers could switch to a BEV250 without having to curtail their mileage on more than 5% of active days. 
• While BEV100 is sufficient for most household vehicles in the US, BEV250 is a better choice for ride-hailing drivers. 
• Range and lifetime cost should not be significant barriers to widespread EV take-up in the ride-hailing.  
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A B S T R A C T   

Transportation network companies provide an increasingly significant share of mobility, which has prompted 
interest in curbing greenhouse gas emissions in the ride-hailing sector. Vehicle electrification offers the possi
bility of vast emissions reductions, but a number of factors are thought to constrain this transition. We investigate 
two such factors – battery electric vehicle (BEV) range and total cost of ownership – from 2019 driving data 
covering all U.S. drivers on the Lyft platform. We estimate that, for more than 86% of drivers, their daily travel 
needs can be met by a fully charged BEV with listed range of 250 miles (BEV250) on at least 95% of days. New 
and pre-owned BEVs both appear to be cost-saving for many drivers. We estimate that a $5,700 BEV purchase 
subsidy would make new BEVs cost-competitive to gas-powered vehicles for all drivers on the Lyft platform, 
holding annual mileage and vehicle prices constant. Our results suggest that range and lifetime cost should not be 
significant barriers to widespread EV take-up in the ride-hailing sector. More generally, they suggest that 
continued moderate subsidies for BEVs, information interventions, and targeting of such programs to ride-hailing 
drivers who stand to gain most from them will promote a faster transition in this sector. Driver-targeted outreach 
and information provision related to EV benefits, as well as expansion of charging availability and fast charging 
rates through local and federal policy, are additional valuable steps to encourage ride-hailing electrification.   

1. Introduction 

Transportation Network Companies (TNCs) or ride-hailing services 
[1] have brought about a new paradigm in personal travel that is rapidly 
reshaping the transportation sector. Ride-hailing platforms such as Lyft, 
Uber, and DiDi provide on-demand mobility services that complement 
and compete with personal vehicle ownership and transit use, changing 
urban travel patterns and the associated energy and environmental 
impacts. TNCs account for a small yet rapidly growing share of trans
portation miles [2] and have likely raised energy use and emissions by 
substituting for public transit, increasing “deadhead” miles, and 

inducing new travel demand [3–7]. The Union of Concerned Scientists 
(UCS), for example, finds that the average ride-hailing trip produces an 
estimated 69% more greenhouse gas (GHG) emissions than the trip it 
replaces [8]. California Air Resources Board estimates that the 2018 
TNC vehicle fleet emitted 301 CO2-eq per passenger-mile traveled (PMT), 
approximately 50 percent higher than the statewide passenger vehicle 
fleet average of 203 CO2-eq/PMT [9]. In 2018, California became the 
first U.S. state to regulate GHG emissions by TNCs, through the Cali
fornia Clean Miles Standard and Incentive Program (Senate Bill (SB) 
1014). In 2021, California legislatures finalized a rule which mandates 
that 90% of ride-hailing miles traveled across the state take place in zero 
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emission vehicles by 2030. 
Fleet electrification is widely viewed as a solution to the problem of 

large and increasing transportation-sector emissions, through the sub
stitution of low- or zero-carbon electricity for emissions-intensive 
automotive fuels [10–15]. Consistent with this notion, Lyft recently 
announced a commitment to transition to 100% electric vehicles (EVs) 
on its platform by 2030 [16]. A few months later, Uber announced the 
same electrification goal for its US platform as well as a similar goal of 
full electrification internationally by 2040 [17]. A number of factors, 
however, are thought to constrain this transition. As of 2019, fewer than 
0.5% of active TNC vehicles were estimated to be electric [18]. The 
upfront cost of an EV is currently higher than that of an internal com
bustion engine vehicle (ICEV), which elicits questions about the cost 
competitiveness of EVs. Ride-hailing drivers predominantly self-identify 
as low income and as a member of minority groups [19], which suggests 
the possibility that financing constraints limit EV uptake. In addition, EV 
batteries must be charged periodically, which, given the relative 
sparseness of the U.S. charging station network may induce “range 
anxiety” among some would-be EV users. Furthermore, the need to 
regularly charge an EV is an example of how the experience itself of 
owning and operating an EV differs from that of an ICEV. Relatedly, 
current limitations on the size or other non-price attributes of EVs may 
be a disincentive to their take-up. 

In this study, we investigate the ability of currently available battery 
electric vehicle (BEV) models to meet the range needs of ride-hailing 
drivers and compete with ICEV and hybrid vehicles on total cost of 
ownership. We bring to bear a large, novel dataset: the universe of 2019 
rides and drivers on the Lyft platform, which spans 110 million driver- 
days and over 1.8 million drivers. The absolute count of active drivers 
represented in this study remains the proprietary information of Lyft Inc. 
We report the analysis results based on the percentage of driver cohorts 
to comply with the data use agreement (see Note). 

We estimate that more than 86% of all drivers on the Lyft platform in 
2019 would have seen their daily travel needs met by a fully charged 
BEV with listed range of 250 miles (BEV250) on at least 95% of driving 
days. This high level of “range suitability” is not dependent on a fully 
charged battery; when we allow for incomplete initial states of battery 
charge, we nonetheless find that a BEV250 is sufficient to complete 82% 
of all observed driver-days. At the same time, we project that a moderate 
subsidy (or an equivalent purchase price reduction) of approximately 
$5,700 for the upfront purchase would be necessary to make a new 
BEV250 cheaper over its use-period for all range-suitable drivers on the 
Lyft platform. Some high-mileage drivers would see total cost savings 
from a new BEV250 even without any subsidy. At estimated current 
prices, all drivers would see total cost savings from a pre-owned BEV, 
which has the lowest total cost of all vehicle types considered. 

These findings together suggest that range and total cost should not 
be constraints on widespread BEV switching by TNC drivers. They also 
point to the importance of information campaigns to address mis
conceptions about BEV attributes, the value of targeting both informa
tion and subsidies to cost-effectively induce EV switching, and the 
notion that resources are better spent on charging technology and 
infrastructure than vehicle range expansion. The climate benefit of 
inducing widespread EV switching in the ride-hailing sector is high: if 
every BEV250-suitable driver on the Lyft platform drove a BEV250 in 
2019, we project 5.72 million metric tons of CO2-eq avoided from tail
pipe emissions (an estimated 77.2% reduction) annually (see Table S-6 
for more details on tailpipe and life-cycle emissions reduction oppor
tunities). This is equivalent to a 0.31% reduction in EPA’s estimate of 
total transportation emissions in the US in 2018 [20]. 

2. Review of prior studies 

EVs not only entail higher energy efficiency compared to ICEVs, but 
also can concentrate emissions from point sources of tailpipes to power 
plants for more efficient and effective emission control and, most 

importantly, help renewable energy integration [13]. However, trans
portation electrification is challenging due to decentralized operation, 
policy conflicts, infrastructure insufficiency, and consumers’ lack of 
awareness, interest, and confidence, among other factors [14,15]. 
Recent studies have shown even aggressive adoption of EVs cannot 
alone meet the net zero emission economy targets [7,12]. The market 
penetration BEVs is currently hindered by their high cost, arguably short 
driving ranges, long charging time, and limited charging infrastructure 
[15,21]. The extent to which BEVs can be accepted by consumers de
pends on individual travel patterns (travel time, trip length, parking 
duration, etc.), BEV characteristics (driving range, charging rates, etc.), 
charging infrastructure access, economics, and a host of psychological 
factors [22]. 

Limited research has shown the potential for adoption of EVs among 
ride-hailing drivers. However, these conclusions were drawn largely 
based on using limited unrepresentative data, simulation, or proxy data 
such as data from taxi operations, because data from real-world ride- 
hailing operations are scarce. Chief among which is a new study sug
gested that electrifying a ride-hailing vehicle offers triple the emission 
reduction compared to switching a personal ICEV vehicle to BEV in 
California [10]. Yu et al. found that environmental benefits of electri
fying ride-hailing can be further enhanced with clean electricity gen
eration [23]. UCS suggested that ride-hailing with BEVs can reduce GHG 
emissions by 39% per passenger-trip compared to private ICEVs [8]. 
Studies from the International Council on Clean Transportation found 
that hybrid electric vehicle (HEV) is the least expensive option for ride- 
hailing drivers on per-mile cost basis and BEV will reach cost parity with 
ICEV by 2023–2025 even without subsidies [24,25]. 

A few previous studies have shed light on BEV range and cost con
siderations in specific contexts and for specific driver types. Tu et al. 
used GPS trajectories from 144,867 ride-hailing drivers in Beijing over 
one week to estimate that up to 55% of total distance driven by ride- 
hailing drivers can be met by 200-mile range BEV and ubiquitous 
home chargers (1.7 kW) [26]. Bauer et al. simulate ride-hailing patterns 
in New York and San Francisco using agent-based modeling and find 
evidence that BEVs can provide the same level of service at lower cost 
than ICEVs [27]. Pavlenko et al. estimate the total costs of EV ownership 
for several “representative” driver profiles [24]. Bauer et al. showed that 
BEVs can provide equivalent ride-hailing services to ICEVs at lower cost 
and the cost of charging infrastructure is not a significant barrier to ride- 
hailing electrification [27]. 

Our work expands on these previous studies by providing a more 
comprehensive empirical picture of BEV range suitability and cost 
considerations than has been previously possible. Tu et al. [26] is the 
only published empirical microdata-based study of range suitability in 
the ride-hailing sector, and there is no analogous pre-existing study of 
cost competitiveness. Our scope is far broader than Tu et al. [26]; we 
observe the entirety of a dominant TNC’s rides and drivers nationally, 
for a full year. Our findings thus provide novel evidence on the barriers 
to fleet-wide electrification, to which both Lyft and Uber have 
committed to achieving by 2030. Moreover, our estimates have a lower 
variance than previous empirical analogs, because they are based on a 
longer time period of observed driving behavior. 

3. Method and materials 

We use anonymized, de-identified travel pattern data on all active, 
non-EV drivers in the US in 2019 on the Lyft platform; the full year of 
data ensures that our analysis accounts for seasonal variation in ride- 
hailing patterns. Our analysis sample includes all drivers with at least 
one active day on the Lyft platform in 2019. Observed vehicle-miles 
traveled (VMT) totals include mileage during “idling time” (or the 
“P1” segment, which covers travel in between occupied rides while the 
Lyft app is still open). We do not observe driving activity while the Lyft 
app is closed (known as P0), which includes personal travel as well as 
ride-hailing and other commercial (e.g., food and parcel delivery) 
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activity through non-Lyft platforms. 
To aid in the presentation and interpretation of results in this large 

dataset, we use unsupervised learning algorithms to identify distinct 
cohorts of drivers with shared travel patterns. Our procedure results in 
four cohorts: Ultra-High Mileage (UHM); High-Frequency High-Mileage 
(HFHM); Low-Frequency High-Mileage (LFHM); and Low-Frequency 
Low-Mileage (LFLM) (Fig. S-1). These cohorts account for 9%, 14%, 
31%, and 46% of all drivers, respectively. We report characteristics and 
summary statistics of relevant variables in the dataset in Table S-1 and 
Fig. S-2. 

Observing the distance traveled on the job every day by every driver 
on the Lyft platform makes it possible to characterize the suitability of 
electric vehicles to meet daily range needs as well as the total cost of BEV 
(versus ICEV) ownership. Other attributes certainly matter as well in the 
vehicle purchase decision [21,22,28,29]; however, the fact that ride- 
hailing driving is primarily done to earn money suggests that such 
drivers are likely to weigh range suitability and cost of ownership 
heavily in vehicle choice. Consistent with this notion, a recent survey 
finds that ride-hailing drivers rank BEV range limitation and economics 
as their top reasons for not choosing BEVs [30]. 

We use several definitions of BEV range suitability. Our primary 
definition is the ability of a BEV to meet a driver’s daily VMT needs on 
95% of days in the year (or, alternatively, fewer than 5% of her active 
days have total VMT higher than BEV range). We additionally charac
terize suitability according to 90% and 99% thresholds. To illustrate the 
pitfalls of focusing on average behavior, we also show the results of 
defining suitability as meeting a driver’s average daily VMT need. 
Throughout our analysis, we assume that BEVs have an energy efficiency 
of 0.28 kWh/mile and 88% usable battery capacity on average [26]. 
Furthermore, we subtract 30 miles from the technical BEV range as a 
buffer to allow for VMT for personal use (the US average VMT for non- 
work was 20 miles per day in 2017 [31]). In our base specification, we 
assume that a BEV’s State of Charge (SoC) is 100% at the beginning of 
the day and no charging occurs during the day. We conduct sensitivity 
analyses in which initial SoC is incomplete or partial mid-day charging is 
possible. 

3.1. Data 

We obtain anonymized data on the daily travel patterns of each 
driver on the Lyft platform in 2019. We omit drivers with no reported 
trips in the year, drivers of EVs and rental vehicles, and drivers with 
extreme outlier values for any of the relevant variables. For each driver, 
we observe daily total VMT, occupied VMT, number of trips completed, 
number of shifts, and shift hours. We also use the driver’s state of resi
dence in state-level calculations. The mileage data includes three seg
ments: P1 (driver waiting for a request); P2 (driver driving to pick-up 
location); and P3 (with at least one passenger in the vehicle). We 
calculate daily total VMT as the sum of these three and use P3 to capture 
occupied VMT. To assess range suitability of BEVs in this dataset, we 
calculate, for each driver, average VMT as well as the 90th, 95th, and 
99th percentiles of daily VMT. Table S-1 and Fig. S-2 show summary 
statistics of the key variables. 

3.2. Driver cohorts 

We create mutually exclusive “cohorts” of drivers exhibiting similar 
travel patterns using an unsupervised learning algorithm. We compare 
the performance of k-means, k-medoids, and hierarchical clustering and 
choose the k-means method with k = 4 for our main analysis [32] 
(Supplementary Note 1 provides more details on the driver clustering). 
Our clustering variables are number of active days, daily number of 
rides, daily total VMT, daily occupied VMT, and daily shift hours; we 
standardize all variables before clustering. Based on the relative attri
butes of each cohort, we use the following cohort names: Ultra-High 
Mileage (UHM); High-Frequency High-Mileage (HFHM); Low- 

Frequency High-Mileage (LFHM); and Low-Frequency Low-Mileage 
(LFLM) (Fig. S-1). Table S-1 includes summary statistics for key vari
ables by cohort. 

3.3. Total cost of ownership (TCO) model 

We build a TCO model to calculate average annual ownership cost of 
vehicles of different types, total mileages, and commitment periods. We 
consider new (2020) and pre-owned (2017) ICEVs, HEVs, and BEVs; 
consistent with Pavlenko et al., we exclude plug-in hybrid electric ve
hicles, since they often operate similar to non-plug-in hybrid models and 
are challenged by relatively high fueling and maintenance costs and 
higher upfront costs [24]. For each vehicle type, we choose one repre
sentative vehicle model to evaluate. For ICEVs, and HEVs, we choose the 
Toyota Camry LE and Toyota Prius, respectively; these are currently the 
best-selling vehicles of their type overall as well as the most common 
vehicles of their type on the Lyft platform [30]. For new and pre-owned 
BEV250, we choose the Chevy Bolt, which is the most common BEV 
among ride-hailing drivers (the best-selling BEV overall is currently the 
Tesla Model 3) [30]. For pre-owned BEV100, we choose the Nissan Leaf, 
which is again the best-selling EV of its range on the used market [33]. 

We assume a 5% discount rate and calculate net present values for 
cash flows associated with future recurring costs in each year of 
ownership. We assume that the first year of ownership is the base year, 
that is, that costs in that first year are undiscounted. Our choice of dis
count rate is higher than the 3% rate frequently used in the trans
portation economics literature, because ride-hailing drivers tend to have 
relatively less income, which is commonly associated with a relatively 
higher discount rate. We use the following formulas to compute average 
annual total cost of ownership (AATCO): 
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CP and AATCOBEV

CP are average annual total cost of 
ownership for ICEV or HEV and BEV, respectively. DCP is the deprecia
tion over the commitment period as described below. CP is the 
commitment period in years (3 or 5 years). i denotes year index and r is 
the discount rate (5%). I is the annual insurance cost. Gs is the 2019 
average gas price ($/gallon) in state s where the vehicle operates and, 
analogously, LCOCs is the levelized cost of electricity ($/kWh) for BEV 
charging in state s as estimated in Borlaug et al [34] (Table S-5). MPG is 
the vehicle fuel economy (miles per gallon) and φ is the BEV energy 
efficiency (kWh/mile). ϕ() is the mileage weighted service and main
tenance cost ($/mile) as described below. MTNC is the annual mileage 
observed on the Lyft platform and MP is the annual mileage for personal 
use of vehicle, which we assume to be 7300 miles per year [31]. We 
exclude taxes, registration costs, and fees given their high variability and 
that they do not contribute substantially to the comparative TCO (they 
are very similar among ICEVs, HEVs, and BEVs. This exclusion may 
slightly disadvantage BEVs, since in some regions BEVs receive dis
counts on registration and fees. 

Depreciation. Depreciation depends on both mileage and vehicle 
age. Vehicles depreciate much faster at the beginning of their lifespan; 
the depreciation curve flattens in later years (of ownership). Prior 
research has shown that BEV cost-competitiveness increases in total 
mileage and commitment period in part because of a depreciation curve 
with a steeper head and flatter tail [35–37]. 

We calculate the depreciation of vehicles as the difference between a 
vehicle’s manufacturer suggested retail price (MSRP) and its vehicle 
residual value (VRV) at the end of the commitment period. For 
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simplicity, we assume BEV subsidies are directly deducted from MSRP as 
a point-of-sale rebate. For pre-owned vehicles, we use Kelly Blue Book 
average dealer estimates of resale price for vehicles listed as “certified 
pre-owned from certified dealer - fair purchase price on very good 
condition”, with a typical mileage of 30,000 miles at the time of 
purchase. 

For VRV, we use the alg.com Vehicle Residual Value tool, which 
provides an estimate of residual value based on mileage band and age for 
most vehicles in the market. We consider four annual mileages (10,000, 
20,000, 30,000, and 40,000 miles) and ownership commitment periods 
of three and five years. The residual values of benchmarked vehicles are 
within a 3% margin of error compared to analogous Kelly Blue Book 
estimates. The residual value estimates for new and pre-owned vehicles 
based on annual mileage and commitment periods are presented in 
Table S-2 and Table S-3, respectively. We match the mileage band to the 
annual VMT of drivers and find the annual average depreciation for each 
vehicle based on three- and five-year ownership commitment. Since 
VRV is based on the undiscounted rate, the depreciation cost over the 
commitment period can be expressed as DCP = MSRP − VRV

(1+r)CP− 1. 

Insurance. Lyft provides drivers with insurance for P1, P2 and P3 
segments of their mileage (dispatched and passenger on-board), but P0 
and personal mileage is paid by the driver. Several studies have 
attempted to estimate the TCO components of ride-hailing vehicles in
clusive of insurance cost. The most widely used estimates come from 
Zoepf et al., who survey drivers about operating cost and provide a 
distribution of cost estimate (median combined cost of $0.13 per mile 
for maintenance, repair, and insurance) but do not break down by the 
components [38]. Henao and Marshall estimate annual insurance costs 
to be $1,500 [39]. Parrot and Reich estimate commercial insurance costs 
for ride-hailing drivers in New York City of $0.14/mile, which is higher 
than the national average. We opt for the American Automobile Asso
ciation’s estimate, with the assumption that insurance rate is not a 
function of mileage [40] as presented in Table S-4. Our estimation of 
annual insurance costs yields a median per-mile cost of $0.067/mile for 
ICEV based on the annual mileage of all drivers, which is slightly higher 
than Zoepf et al.’s survey estimates when accounting for service and 
maintenance (S&M) costs. Insurance cost is slightly lower for HEVs and 
BEVs relative to ICEVs as well as pre-owned models relative to new ones. 

Service & Maintenance Costs. It is widely believed that service and 
maintenance (S&M) of BEVs are far less expensive than those of ICEV 
and HEV on average, given fewer parts that need routine maintenance. 
Reliable life cycle maintenance data from EVs are rare and usually re
ported in the form of a single estimate regardless of vehicle age and 
mileage [35]. Here, we develop a model which benefits from mileage- 
specific S&M costs for the whole lifecycle of a vehicle. 

In the TCO model, ϕ() is a dynamic function which returns a mileage- 
weighted average S&M cost per mile for each vehicle technology based 
on a driver’s annual mileage (observed and personal) and ownership 
commitment period. ϕ() is calculated based on the mileage-specific S&M 
costs for the lifecycle of vehicles represented in Fig. S-6. We assume that 
the useful life of a BEV is 200,000 miles and that of an ICEV or HEV is 
150,000 miles [41]. For fair comparison, we augment an upfit cost of 
2.04 ¢/mile after 150,000 miles for ICE and HEV, as suggested in 
Elgowainy et al. [41] Ranges of estimated S&M costs for different 
combinations of vehicle type, new vs. pre-owned, and commitment 
period length are shown in Fig. S-7. 

Fuel and Electricity Costs. To produce estimates of per-mile energy 
costs, we first obtain EPA estimates of fuel economy for each vehicle 
model in our exercise. For new and pre-owned ICEV, we use 27 and 25 
miles per gallon (MPG), respectively, as the combined (55% city, 45% 
highway) fuel economy. For new and pre-owned HEVs, we use 50 MPG. 
For new and pre-owned BEV, we assume an energy efficiency (φ) of 0.28 
and 0.29 kWh per mile, respectively. 

For gas price (Gs), we use the EIA 2019 average estimate in the 
driver’s state, which includes taxes and is based on the weighted sales 

volume of three grades of gas, as shown in Table S-5 [42]. National 
average gas price in 2019 is $2.763/gal with median of $2.625/gal. The 
levelized cost of charging (LCOC) for BEV charging is adopted from a 
recent study from NREL [34] and matched by driver’s state (LCOCs). 
Baseline estimates of LCOC for each state are presented in Table S-5, 
which shows a national average of 0.150 $/kWh (exclusively charging at 
DCFC stations increases the national LCOC to 0.18 $/kWh, while the 
price falls to 0.11 $/kWh for drivers who only charged their BEV using a 
dedicated household outlet.). For simplicity, we assume Gs and LCOCs 
do not change over the ownership commitment period. 

4. Range suitability of BEVs for ride-hailing drivers 

Fig. 1 presents cumulative distributions of range suitability with 
respect to BEV battery size. In Panel A, we plot full-sample distributions 
for each of our four definitions of suitability; in Panel B, we reprint the 
full-sample distribution for our preferred definition alongside analogous 
distributions for the Low-Frequency Low-Mileage (LFLM) and Ultra- 
High Mileage (UHM) cohorts. Panel A shows that, for the great major
ity of drivers, their range needs are met on most or all days of ride- 
hailing activity. For example, a BEV250 satisfies 95% or more days of 
driving needs for 86.2% of all non-EV drivers on Lyft’s platform in 2019. 
The corresponding number for the 90% and 99% thresholds are 92.4% 
and 74.7%, respectively. For context, there are currently several 
BEV250s on the market, including the Chevy Bolt, Tesla Model 3, Ford 
Mustang Mach E, and Kia Niro. 

Three other facts are apparent from Fig. 1. First, assessment of range 
suitability using average behavior is misleading. According to Panel A, a 
200-mile battery meets nearly every driver’s average daily need – but at 
the same time, we calculate that such a battery size fails to meet a 
driver’s needs on 48 days of the year, on average. Second, the marginal 
suitability effect of battery size decreases at higher battery sizes in the 
full set of drivers (Panel A). The right tail of ride-hailing driver activity is 
long: a battery size of 300 miles would be 99% range-suitable for 86.7% 
of drivers, but to provide the same level of suitability to nearly all 
(99.9%) drivers, a size of 590 miles would be needed. Third, there are 
wide differences in range suitability across the driver distribution. Ac
cording to Panel B, a BEV250 is suitable for all LFLM drivers but only a 
quarter of UHM drivers. 

We note two additional analyses that shed light on the sensitivity of 
range suitability to assumptions about BEV charging. First, we replicate 
the prior calculation while assuming that each driver takes advantage of 
a 30-minute daily partial charging via a 30 kW DC Fast Charger (DCFC), 
which is equivalent to a 90-mile range increase. There is an opportunity 
cost of mid-day charging, but the magnitude of this cost depends on the 
counterfactual activity of drivers. A recent survey of 732 BEV drivers on 
the Uber platform shows that a significant portion of drivers do engage 
in mid-day charging, with a mix of public level 2 chargers and DCFCs 
[30]. With 30-minute daily partial charging, our preferred estimate of 
BEV250 suitability increases from 86.2% to 97.7% of drivers (Fig. S-5). 

Second, we investigate the extent to which observed days of ride- 
hailing activity can be met with less-than-complete States of Charge 
(SoCs), in acknowledgment of the fact that not all drivers are able to 
charge their vehicle to 100% before starting the day. We run a stochastic 
simulation with 10,000 iterations: in each iteration, we draw a random 
initial SoC uniformly distributed between 20 and 100% for each active 
driver-day and count the number of driver-days whose VMT can be met 
with BEVs of different battery size (otherwise we use the same as
sumptions as in our Fig. 1 analysis). Fig. 2 plots the empirical distribu
tion (across the 10,000 iterations) of the percentage of driver-days with 
VMT less than the range of a BEV250 (or BEV100). The figure shows 
that, on average, 82% of all driver-days can be completed with a 
BEV250, while 40% can be completed with a BEV100. For the LFLM 
driver cohort, meanwhile, a BEV100 is sufficient for the completion of 
71% of driver-days. 

More generally, our simulation exercise suggests that the high degree 
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of BEV suitability implied by our main results is not overly sensitive to 
the assumption of 100% SoC. Needell et al. finds that for household ve
hicles in the US, relying only on night-time charging, a BEV with just 
under a 100-mile battery size could meet the travel demand of 87% of 
vehicle-days based on the 2009 National Household Travel Survey 
(NHTS) [43]. In contrast, we find that for ride-hailing drivers, while 
BEV100 can fulfill 40% of driver-days, less than 20% of drivers are 
range-suitable with it with 95th percentile-VMT criterion. While 
BEV100 is sufficient for most household vehicles in the US, BEV250 is a 
better choice for ride-hailing drivers. 

To the extent that Lyft ride-hailing VMT and other sources of VMT 
are negatively correlated, we may be underestimating daily VMT by 
low-mileage ride-hailing drivers in our data. Those with high average 
daily mileage are more likely to be loyal drivers on the Lyft platform, 

and they have limited additional time for travel in the day by nature of 
their high observed Lyft VMT. Lower-mileage drivers, on the other hand, 
are more likely to be engaging in ride-hailing through other platforms 
and have more time for other commercial activity and personal use. 

5. Total cost of ownership of BEVs 

We utilize a Total Cost of Ownership (TCO) approach to model 
vehicle cost over the commitment period. TCO modeling is a standard 
tool in transportation economics for comparing different technologies 
on the grounds of cost [36]. In our analysis, TCO depends on the 
annualized fixed costs of capital and insurance, the marginal costs of 
service and maintenance (S&M) and fuel, and the levelized cost of 
electricity charging (LCOC). We estimate costs for a representative ICEV, 

Fig. 1. (A) BEV range suitability for all drivers on the platform based on battery size (mile and kWh capacity) under different suitability criteria. 95th%-VMT BEV 
suitability indicates that the BEV range meets the daily VMT needs of a driver on 95% of her active days. 90th% and 99th% suitability criteria are analogous. 
“Average VMT” suitability indicates that daily VMT needs are met on a driver’s average day. (B) BEV suitability with the 95th%-VMT metric overall and for specific 
cohorts (see text for cohort definitions). 

Fig. 2. Sensitivity of BEV suitability to initial State of Charge (SoC) based on stochastic simulation with 10,000 iterations. Initial SoC is uniformly distributed 
between 20 and 100%, and all other procedural details are the same as in Fig. 1. The average percentage of active days completed by BEV250 (BEV100) is 82% 
(40%). The simulation of specifically the LFLM driver cohort shows 71% of active days can be fulfilled with BEV100. 
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HEV, and BEV model on the market at each battery range. LCOC reflects 
the average cost of charging given the monetized opportunity cost in 
level of access to charging infrastructure as well as electricity cost 
calculated at the state level [34]. We exclude taxes, registration costs, 
and other fees, which are very similar for ICEVs, hybrid electric vehicles 
(HEVs), and BEVs (this exclusion may slightly disadvantage BEVs in TCO 
comparisons, because there are rebates on such fees for BEVs in some 
states). We apply a 5% discount rate on expenses beyond the purchase 
year. A variety of state and federal government subsidies are available to 
most EV buyers, including, most prominently, a federal tax credit for EV 
purchases that is currently capped at $7,500, and some EV manufac
turers have already hit this cap. To model the effect of these subsidies on 
TCO, we incorporate a point-of-sale rebate of varying sizes on all new 
BEV purchases in our analysis. 

We begin by estimating TCO for different vehicle types, annual VMT, 
and commitment periods. We consider both new and used BEVs (of 
varying battery sizes), HEVs, and ICEVs. We vary annual VMT from 
10,000 to 40,000. Following evidence on the average ownership 
commitment period among TNC drivers [39,44], we evaluate TCO over 
commitment periods of three and five years (a longer ownership 
commitment period would favor BEVs). We then divide TCO by total 
VMT over the ownership commitment period to obtain a “levelized cost” 
of ownership in dollars per mile. 

Fig. 3 illustrates the per-mile TCO of new and pre-owned vehicles for 
different annual mileages and commitment periods. With an annual 
VMT of 10,000 – which is close to the annual average mileage of a 
personal vehicle in the US – a new pre-subsidy BEV250 costs nearly 27% 
more than a new ICEV for three years of ownership. However, as annual 
mileage and commitment period increase, BEV250 becomes increas
ingly cost-effective. 20,000 VMT per year is sufficient to make a pre- 
subsidy BEV250 cost less per mile than an ICEV with a five-year 
commitment period; 30,000 VMT is sufficient to do so for both 
commitment period lengths. Meanwhile, with a $10,000 purchase sub
sidy, which is roughly consistent with the combined value of current 
federal and state incentives for many BEV models, a new BEV250 
consistently costs far less than a new ICEV. For example, with a modest 
annual VMT of 10,000, a five-year commitment period, and a $10,000 
subsidy, a BEV250 costs nearly 29% less than ICEV. An HEV also 
consistently costs less than an ICEV and competes with BEV250 
depending on mileage, commitment period, and subsidy level. Our cost 

estimates are consistent with those of Borlaug et al. [34] and Palmer 
et al. [36] but slightly larger in magnitude due to the shorter ownership 
commitment periods we use here. Several market research entities also 
report $6,000-$10,000 lifetime savings for BEVs compared to ICEVs, 
and even larger savings for pre-owned BEVs [37,45]. 

Notably, pre-owned BEVs cost less than pre-owned HEVs and ICEVs 
regardless of mileage and ownership commitment period, even without 
the aid of any purchase subsidy (for which pre-owned BEVs are ineli
gible). For instance, a pre-owned BEV100 (e.g., a Nissan Leaf) appears to 
be a very cost-effective option for those drivers whose daily VMT needs 
are met by a battery size of 100 miles. This represents a significant 
portion of drivers in the LFLM cohort and implies that, at currently 
observed vehicle prices, switching to a pre-owned BEV100 could 
significantly reduce total vehicle costs for the majority of ride-hailing 
drivers. The main reason why pre-owned BEVs have a greater relative 
cost advantage than new ones is that BEVs are currently considered 
semi-luxury vehicles; this induces a steep depreciation curve at the 
beginning of vehicle use and a flatter curve than those of ICEVs and 
HEVs from the third to fifth year of ownership [37]. 

Next, we apply our TCO analysis to the drivers in our ride-hailing 
dataset. Fig. 4 plots ranges of annualized savings produced by switch
ing from an ICEV to a BEV. In Panel A, the BEV has a battery size of 250 
miles and the commitment period is five years. We plot ranges and av
erages for the full sample as well as each cohort, excluding drivers for 
whom a 250-mile range does not meet our suitability criterion (Fig. S-8 
and Fig. S-9 show analogous results using alternative assumptions). VMT 
is the largest source of variation in total costs across drivers, but cross- 
state differences in LCOC and the price of gasoline are also relevant 
(see Fig. S-11 and Supplementary Note 2 for state-specific analysis). 

With no subsidy, a new BEV250 is costlier than a new ICEV for most 
but not all drivers. Overall, 8.3% of all 2019 drivers on the Lyft platform 
are projected to both find a BEV250 range-suitable and save money 
switching to it. High-mileage drivers, however, are more likely to find a 
BEV250 attractive on cost grounds. The analogous cohort-specific per
centages of drivers for whom a BEV250 provides both suitable range and 
cost savings are 12.2% in the UHM cohort and 48.5% in the HFHM 
cohort. As Panel A of Fig. 4 shows, no driver loses more than $1,100 per 
year switching to a BEV, but a number of drivers gain more than $1,500 
per year from a switch. 

With a $10,000 purchase subsidy, all drivers on the Lyft platform are 

Fig. 3. Levelized (per mile) total cost of (A) new and (B) pre-owned vehicles for different annual mileages and commitment periods. The error bars represent the 
highest and lowest estimates with respect to variation of fuel and LCOC in different states. Per-mile cost includes depreciation, insurance, fuel/electricity, and 
S&M costs. 
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projected to save money switching to a BEV250, though only 86% of 
them also find a BEV250 range-suitable. The switch is projected to save 
an average of $1,325 annually among these drivers (Fig. S-10), though 
savings rises above $3,000 for some. Similarly, Panel B of Fig. 4 shows 
that switching to a pre-owned BEV100 or BEV250 (from a pre-owned 
ICEV) is projected to save money for all drivers at current purchase 
prices. Panel B also illustrates the value of battery right-sizing: LFLM and 
LFHM drivers uniformly save the most from a pre-owned BEV100, while 
some HFHM and UHM would find a BEV250 to be the cheaper option. 

The purchase subsidy available to a potential BEV buyer is clearly 
very impactful in bringing BEVs to cost parity with ICEVs: a new BEV250 
is projected to be range-suitable and cost-saving for 8.6% of drivers on 
the Lyft platform with no subsidy and 86.2% of drivers with a $10,000 
subsidy. Given the magnitude of this effect, as well as uncertainty and 
geographic variation in what the subsidy level will be going forward, it 
is instructive to investigate how TCO moves with the subsidy level be
tween $0 and $10,000. Fig. 5 precisely displays this relationship, overall 

and in each cohort, again under a five-year commitment period (Fig. S- 
12 repeats the experiment for a three-year commitment period). The 
average driver breaks even by switching to a new BEV250 with a subsidy 
of $3,200, though the right-skewed VMT distribution of ride-hailing 
drivers means only 26.5% of drivers actually break even at this sub
sidy level. However, a subsidy of $5,700 is enough to cause all range- 
suitable drivers to at least break even on the switch. The curves in 
Fig. 5 are capped below 100% (except in the case of the LFLM cohort) 
only because there are drivers in each cohort for whom a BEV250 does 
not provide suitable range. An equivalent reduction in vehicle purchase 
price due to battery cost cut has the same effect. The re-designed 2022 
Chevrolet Bolt is projected to cost $5,500 less than the prior model [46]; 
our analysis implies that this price reduction brings nearly all range- 
suitable drivers to the break-even point on switching without any 
additional subsidy. 

Fig. 4. The range and distribution of annual savings from ICEV to BEV for BEV-suitable drivers. (A) From new ICEV to BEV250 with and without purchase subsidies, 
under a 5-year commitment period. (B) From pre-owned ICEV to pre-owned BEV250 and pre-owned BEV100, under a 3-year commitment period. The red dots show 
the average annual savings for the whole population in the cohort. The boxes describe 25th percentiles (left hinge), medians (white line), and 75th percentiles (right 
hinge); whiskers describe absolute minimum and maximum. Savings distributions for other scenarios are shown in Fig. S-8 and Fig. S-9. 

Fig. 5. Percentage of drivers in each cohort that both 
find a BEV250 range-suitable and break even under a 
5-year ownership commitment, as a function of sub
sidy level. Curves that plateau below 100% have 
drivers for whom a BEV250 does not have suitable 
range. An average driver breaks even with a minimum 
of $3,200 purchase subsidy. Vertical lines indicate 
certain specific levels of subsidy. Fed + State: current 
level ($10,000) for some states; Fed Only: $7500 fed
eral tax credit; Reduced: a scenario where tax rebate is 
reduced to $5,000.   
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6. Discussion and policy implications 

Overall, our analysis suggests that range and total cost should not be 
seen as constraints on significant BEV take-up in the ride-hailing sector. 
We estimate that approximately 86% of drivers on the Lyft platform in 
2019 could switch to a BEV250 – of which several models are currently 
on the market – without having to curtail their mileage on more than 5% 
of their active days. When we relax our assumption of 100% initial state 
of charge (SoC), the median percentage of driver-days (across 10,000 
simulations) for which a BEV250 meets our suitability criterion remains 
high at 82%. Some of these drivers – in particular, high-mileage ones – 
are projected to save money by driving a new BEV250 even without a 
purchase subsidy. All range-suitable drivers are projected to at least 
break even with a subsidy of $5,700; the average savings at this subsidy 
level is $511 per year. Given that the federal tax credit program for EV 
purchase is expiring, maintaining this level of subsidy is crucial to 
making new BEVs cost-effective for the majority of ride-hailing drivers. 
Meanwhile, pre-owned BEVs offer significant savings and may be 
particularly attractive to those drivers who don’t value the “luxury” 
attribute of new BEVs. 

If all identified drivers who are BEV250-suitable (86% of all drivers) 
adopt BEVs, the sustainability benefits are staggering, as shown in 
Table S-6 and discussed further in Supplementary Note 3. This corre
sponds to 5.86 billion miles of electrified VMT on the Lyft platform 
annually, 62% of which come from the UHM and HFHM cohorts who 
save the most from electrification. Considering personal mileage, the 
total electrified VMT exceeds 17 billion miles annually, 41% of which 
are from the LFLM cohort, which accounts for nearly half of all drivers 
on the platform. The annual life cycle GHG emission reduction is more 
than 4.30 million metric tons of CO2-eq (5.72 from tailpipe reduction) 
using a conservative estimate of BEV battery production emissions. 
Specifically, the life cycle GHG emission reduction varies widely across 
states (Fig. S-13), depending on the average emission factors of elec
tricity generation and aggregate electrified VMT, with the highest 
emission reduction in California, Texas, New York, and Florida. In 
contrast, switching to BEVs by BEV250-suitable drivers would lead to an 
additional 4.9 TWh of electricity consumption annually, which is 
equivalent to only 0.12% of US electricity generation in 2019. 

These results have several implications for strategy and policy aimed 
at electrification. To the extent that drivers are unfamiliar with the 
technology or uninformed about range suitability and total costs of 
BEVs, information and awareness campaigns for potential EV 
buyers—specifically about available incentives and subsidies—may be 
effective at inducing a vehicle switch. This may be especially true in the 
ride-hailing sector, where drivers are more likely to be motivated by 
profit considerations and put correspondingly less weight on non-price 
vehicle attributes. The high resolution of our data and analysis shows 
the value of “targeting” here: high-mileage drivers may already be better 
off with a BEV, so changing perceptions among these drivers may be 
more likely to induce a vehicle switch; low-mileage drivers may, in some 
cases, be better off with a pre-owned BEV100. 

Subsidies, too, could be targeted to good effect, to the extent that this 
is feasible. Not every driver needs the same subsidy level to be incen
tivized to switch. Moreover, our assumption of subsidy as a point-of-sale 
rebate has a significant equity implication. While EVs are competitive 
with ICEVs on total cost grounds, their higher upfront cost may prevent 
some financially constrained drivers (including those with low income, 
credit score, or tax appetite, or facing other barriers to financing 
mechanisms) from making the switch. Subsidies targeted and tailored to 
such drivers could help reduce this barrier. On top of increasing the 
manufacturer cap, the federal EV incentive program in 2021 has pro
posed switching the EV tax credit to point-of-sale rebate which makes EV 
subsides more available to low-income EV buyers, including ride-hailing 
drivers. More generally, the revelation (and communication) of wide
spread range suitability and cost competitiveness should free up TNCs 
and other entities in the transportation sector to prioritize other 

potential barriers to EV take-up. For instance, rather than investing in 
further range expansion of BEVs, companies and policymakers may 
more productively invest in charging technology and infrastructure to 
harness the battery sizes that are already suitable for most drivers. 

Our work, its meaning, and its limitations suggest several avenues for 
future research on the electrification of cars on TNC platforms. First, 
discrepancies between perceived and actual range suitability and cost of 
ownership of BEVs point to the value of research on changing percep
tions about such vehicles. Second, our study uses standard assumptions 
in the literature about access to charging infrastructure; accurately 
depicting current and projected access at a high resolution would 
improve future analyses of range suitability and total cost of ownership. 
Third, a TNC-wide transition to BEVs would very likely induce changes 
in purchase price (among other attributes), and future work to under
stand EV supply and demand dynamics could shed light on such 
changes. Fourth, although the current study investigates range suit
ability from the observed driver mileage, psychological factors associ
ated with “range anxiety” of ride-hailing drivers merit further study. 
Finally, ride-hailing drivers predominantly self-identify as low-income 
and as members of a minority group [19]; research on policy design 
and corporate strategy to spur the electrification of ride-hailing should 
thus center their consequences for equity and justice, including through 
their effects on ride-hailing drivers. 

Data Availability 

The data on drivers’ travel patterns which we use in this study are the 
property of Lyft Inc. and were made available through a data use 
agreement (DAU). Source data for each figure in the main text are 
provided in the following repository: 

https://github.com/taiebat/TNC_EV_Suitability. 

Note 

This analysis has been conducted independent of Lyft Inc. (Lyft) and 
the data is provided through a Data Use Agreement (DAU) at the request 
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Fig. S-1.  Near optimal and externally valid driver cohorts. UHM: Ultra High Mileage; HFHM: High Frequency High Mileage; LFHM: 

Low Frequency High Mileage; LFLM: Low Frequency Low Mileage. 

 

 

Table S-1. Summary statistics of variables in the dataset for all drivers and by cohort. 

 All UHM HFHM LFHM LFLM 

Number of Active Days in 2019 59 124 190 36 24 
Average Active-Day Number of Rides 5.4 12.4 5.6 6.4 3.2 
Average Active-Day Observed VMT on Platform 70 145 77 86 43 
Average Active-Day Occupied VMT 25 58 26 30 14 
90th-percentile VMT 123 234 137 152 77 
95th-percentile VMT 139 261 160 173 88 
99th-percentile VMT 165 309 208 201 101 
Average Active-Day Shift Duration (hr)  3.54 7.04 4.21 4.21 2.22 
Observed Annual VMT on Platform 5,112 17,782 14,887 3,095 1,132 
Total Annual VMT* 12,412 25,082 22,187 10,395 8,432 

 * Derived variable: annual observed VMT by Lyft plus 7,300 miles of personal miles. 
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Fig. S-2. Distributions of selected variables in the dataset for all drivers and by cohort. The gray shade represents the distribution 

of variable for all drivers, regardless of cohort. 

 

Supplementary Note 1: Driver clustering. 

Based on computational efficiency and superior clustering power, we choose k-mean 

clustering, which minimizes within-cluster variances (squared Euclidean distances) of the 
aforementioned variables. Finally, we use several verification methods for checking the optimality 
of clusters (Fig. S-3). Both Elbow method and Silhouette width method suggest only two optimal 
clusters on selected variables and then marginal decrease in optimality with higher number of 

clusters (Fig. S-4). We use expert knowledge on average characteristics of resultant clusters to 
choose the near-optimal yet externally valid set of driver clusters. While the analysis is conducted 
at the individual driver level, some results are also reported on the cohort basis to provide a 

roadmap for identifying the ideal cohort of drivers for electrification efforts. Note that these 
cohorts based on the clustering method are not absolute, and drivers on the boundary of cohorts 
have travel patterns similar to those of either cohort. 
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Fig. S-3. The performance of other unsupervised machine learning methods tested for defining the driver cohorts. Both Elbow 

method and Silhouette Width result in only two optimal clusters for all three algorithms. We use expert knowledge to choose 
four clusters as externally valid cohort without significantly losing the cluster optimality.  
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Fig. S-4. Results of different number of clusters on K-means clustering of cohorts on two variables. 4-cluster appears to have 
more external validity than others. The Greater number of clusters than 4 makes further cuts on low frequency low mileage 

drivers and does not improve the external validity. 

 

 

 
Fig. S-5. 95th%-VMT BEV Suitability with midday 30-minute charging at 30 kW DCFC. We use the full sample of drivers on the Lyft 

platform. The procedure for producing this figure is identical to that of Fig. 1, except for the allowance of an additional 30-minute 
midday charge. 

BE
V2

50

BE
V1

00

BE
V3

00

65.7%

97.7%

99.3%

0kWh 50kWh 100kWh 150kWh

0%

25%

50%

75%

100%

0 100 200 300 400 500
Battery Size (mile)

Pe
rc

en
ta

ge
 o

f A
ll 

D
riv

er
s

BEV Suitability with Mid−Day Charging



6 

 

Table S-2. The residual value (𝑉𝑅𝑉) of new vehicles at the end of ownership commitment period from alg.com. The residual value 
is expressed as the percentage of MSRP.  

New Models ICEV HEV BEV250* 
MSRP $24,365 $27,280 $36,620 

Mileage Per Year 3-Year Commitment 
10K miles/year 47% 56% 44% 
20K miles/year 41% 51% 38% 
30K miles/year 34% 45% 30% 
40K miles/year 24% 39% 23% 
 5-Year Commitment 
10K miles/year 32% 39% 34% 
20K miles/year 23% 27% 23% 
30K miles/year 10% 16% 13% 
40K miles/year 1% 8% 8% 

*For simplicity, we assume EV tax credits and subsidies are directly deducted from MSRP. The depreciation 
cost over commitment period is the difference between MSRP and residual value. 

 

Table S-3. The residual value (𝑉𝑅𝑉) of pre-owned vehicles at the end of ownership commitment period from alg.com 

Pre-owned Models* ICEV HEV BEV250 BEV100 
Pre-owned Certified 
Dealer Price $15,632 $18,362 $19,144 $11,083 

Mileage Per Year 3-Year Commitment 
10K miles/year 38% 49% 51% 61% 
20K miles/year 29% 42% 40% 45% 
30K miles/year 19% 33% 26% 26% 
40K miles/year 9% 24% 13% 8% 
 5-Year Commitment 
10K miles/year 32% 42% 33% 52% 
20K miles/year 17% 29% 14% 25% 
30K miles/year 2% 15% 2% 3% 
40K miles/year 2% 2% 2% 3% 

*Kelly Blue Book estimate corresponding to “Certified Pre-Owned from Certified Dealer - Fair Purchase 
Price on Very Good Condition”, with typical mileage of 30K at the time of purchase. 

 

Table S-4. Estimated annual insurance costs (𝐼) for new and pre-owned vehicles. We assume the insurance rate is not a function 
of mileage, following the methodology of AAA. 

 ICEV HEV BEV 
New Models $1,109 $1,200 $1,215 
Pre-Owned Models $964 $1,022 $1,001 
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Fig. S-6. Service & Maintenance (S&M) costs per mile for different vehicle types. We assume that ICEV and HEV reach the end of 

their life (EOL) at 150,000 miles, while BEV reaches EOL at 200,000 miles. An upfit cost of $0.0204/mile is assumed for any 
mileage after 150,000 miles for ICEVs and HEVs. No vehicle in our analysis reaches over 200,000 miles under the assumption of a 

3- or 5-year commitment period. 

 

 

 
Fig. S-7. Range of mileage-weighted average S&M costs per mile for all drivers by model type, new vs. pre-owned, and 

commitment period length. The mileage-weighted average S&M cost additionally depends on annual mileage. Red points denote 
averages and whiskers show minimum and maximum. 
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Table S-5. 2019 average gas price and LCOC by state.  Gas price includes taxes and is based on the weighted sales volume of 
three grades of gas, as calculated by the US Energy Information Administration.[1] The national average gas price in 2019 is 

$2.763/gal, and the median is $2.625/gal. LCOC is based on the central estimate of Borlaug et al. for each state.[2] The average 
LCOC is 0.15 $/kWh nationwide, with the highest costs in Hawaii and the lowest in the Oregon, Washington DC, Delaware, and 

Maine. For equivalent per mile cost, 0.28 kWh/mile and 27 mile/gal are used for energy efficiency of BEV and ICEV, respectively.  

State LCOC  
($/kWh) 

Gas Price (𝑮𝒔) 
($/gal) 

BEV per-mile LCOC 
($/mile)  

ICEV per-mile gas 
cost ($/mile) 

Alabama 0.13 2.369 0.0364 0.0877 
Alaska 0.25 3.516 0.0700 0.1302 
Arizona 0.12 3.101 0.0336 0.1149 
Arkansas 0.13 2.332 0.0364 0.0864 
California 0.18 3.968 0.0504 0.1470 
Colorado 0.13 2.503 0.0364 0.0927 
Connecticut 0.15 3.040 0.0420 0.1126 
Delaware 0.10 2.625 0.0280 0.0972 
District of Columbia 0.10 3.089 0.0280 0.1144 
Florida 0.15 2.698 0.0420 0.0999 
Georgia 0.12 2.552 0.0336 0.0945 
Hawaii 0.31 3.944 0.0868 0.1461 
Idaho 0.13 2.930 0.0364 0.1085 
Illinois 0.16 2.637 0.0448 0.0977 
Indiana 0.15 2.491 0.0420 0.0923 
Iowa 0.12 2.576 0.0336 0.0954 
Kansas 0.16 2.393 0.0448 0.0886 
Kentucky 0.13 2.576 0.0364 0.0954 
Louisiana 0.13 2.381 0.0364 0.0882 
Maine 0.10 2.723 0.0280 0.1009 
Maryland 0.17 2.711 0.0476 0.1004 
Massachusetts 0.23 2.955 0.0644 0.1094 
Michigan 0.18 2.515 0.0504 0.0931 
Minnesota 0.14 2.527 0.0392 0.0936 
Mississippi 0.15 2.357 0.0420 0.0873 
Missouri 0.15 2.332 0.0420 0.0864 
Montana 0.15 2.784 0.0420 0.1031 
Nebraska 0.15 2.613 0.0420 0.0968 
Nevada 0.11 3.504 0.0308 0.1298 
New Hampshire 0.12 2.808 0.0336 0.1040 
New Jersey 0.15 2.845 0.0420 0.1054 
New Mexico 0.14 2.479 0.0392 0.0918 
New York 0.12 3.053 0.0336 0.1131 
North Carolina 0.13 2.576 0.0364 0.0954 
North Dakota 0.14 2.552 0.0392 0.0945 
Ohio 0.15 2.393 0.0420 0.0886 
Oklahoma 0.12 2.259 0.0336 0.0837 
Oregon 0.10 3.480 0.0280 0.1289 
Pennsylvania 0.16 3.004 0.0448 0.1113 
Rhode Island 0.22 2.894 0.0616 0.1072 
South Carolina 0.16 2.589 0.0448 0.0959 
South Dakota 0.16 2.381 0.0448 0.0882 
Tennessee 0.15 2.442 0.0420 0.0904 
Texas 0.15 2.332 0.0420 0.0864 
Utah 0.15 2.943 0.0420 0.1090 
Vermont 0.15 2.943 0.0420 0.1090 
Virginia 0.11 2.491 0.0308 0.0923 
Washington 0.14 3.578 0.0392 0.1325 
West Virginia 0.16 2.723 0.0448 0.1009 
Wisconsin 0.12 2.503 0.0336 0.0927 
Wyoming 0.15 2.906 0.0420 0.1076 
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Fig. S-8. Distribution of average annual savings from switching to new BEVs under various scenarios. The range for all drivers is 

shown regardless of whether they are BEV suitable or not. Columns show with and without purchase subsidy and rows show the 
distribution for the cohorts. The boxes describe 25th percentiles (left hinge), medians, and 75th percentiles (right hinge) and 

whiskers describe 1.5 times the interquartile range. 
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Fig. S-9. Distribution of average annual savings from switching to pre-preowned BEVs under various scenarios. The range for all 

drivers is shown regardless of whether they are BEV suitable or not. Columns show the average savings 3- and 5-year 

commitment period and rows show the distribution for the cohorts. The boxes describe 25th percentiles (left hinge), medians, 
and 75th percentiles (right hinge) and whiskers describe 1.5 times the interquartile range. 
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Fig. S-10. The range and distribution of annual saving from ICEV to BEV for BEV-suitable drivers with positive savings (Fig. 4 shows 

the full range). (A) From new ICEV to BEV250 with and without purchase subsidies under 5-year commitment period. (B) From 
pre-owned ICEV to pre-owned BEV250 and pre-owned BEV100 under 3-year commitment period. The red points show the 

average annual savings. The boxes describe 25th percentiles (left hinge), medians (white line), and 75th percentiles (right hinge) 
and whiskers describe absolute minimum and maximum.  
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Fig. S-11. State-level average annual savings from new ICEV to new BEV250 with and without purchase subsidies under 5-year 

commitment period. 

 

 

Supplementary Note 2: State-level average annual savings from new ICEV to new BEV250. 

Fig. S-11 illustrates the state-level average annual savings from new ICEV to new BEV250 with 
and without purchase subsidies. With subsidies, states of WA, NE, OR, CA, and NY have the highest 
average annual savings. Without subsidies, Nevada’s drivers return the highest savings, mostly due 

to the highest average mileage in the nation. States of KS, SD, MS, and RI have the lowest average 
annual savings in both cases. Note that, with subsidies, far more LFLM drivers in those states break 
even or save from switching to BEV, which changes the decomposition of the set of drivers in those 

states who are both BEV suitable and save from switching to BEVs. 
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Fig. S-12. Percentage of drivers in each cohort that both find a BEV250 range-suitable and break even under a 3-year ownership 

commitment, as a function of subsidy level. Curves that plateau below 100% have drivers for whom a BEV250 does not have 
suitable range. An average driver breaks even with a minimum of $4,800 purchase subsidy. Vertical lines indicate certain specific 

levels of subsidy. Fed + State: current level ($10,000) for some states; Fed Only: $7500 federal tax credit; Reduced: a scenario 
where tax rebate is reduced to $5,000.  

 

 

Supplementary Note 3: Sustainability implications. 

The emissions conversion from gasoline to CO2 is based on EPA measurements of 8,887 grCO2-

eq per gallon of gas and the fuel economy of replaced ICEV (27 miles per gallon). For the life-cycle 

GHG emissions we use BEV energy efficiency, data from state-level average emission factor of 
electricity generation from NREL’s Cambium dataset [3] and per-mile vehicle cradle-to-grave 
emissions (including vehicle manufacturing and battery production and end of life) for ICEV and 
BEV. The estimate of state-level marginal emission factor of electricity generation is for year 2020 

based on short-run mid-case scenario of NREL’s Regional Energy Deployment System [3]. The US 
average marginal emission factor of electricity generation is 365.16 grCO2-eq/kWh but varies greatly 

among the states. As a point of comparison, our estimate of California’s marginal emission factor for 

electricity generation is 192 grCO2-eq/kWh which is slightly higher than the estimate of  Jenn [4] (186 grCO2-

eq/kWh). We use a central estimate of 43 grCO2-eq/mile for ICEV and a conversative estimate of 144 grCO2-

eq/mile for BEV including battery production for cradle-to-grave emissions excluding the use phase. Note 

that Cox et al., Hoekstra et al. and Elgowainy et al. estimate a range of 85-162 grCO2-eq/mile for BEV as use-

phase excluded cradle-to-grave emissions [5–7]. 
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Table S-6. Implications of electrification of all drivers who are BEV250-suitable and save from switching. All figures are based on 
annual estimate 

 All UHM HFHM LFHM LFLM 

Annual Avoided Tailpipe GHG Emissions 
(Million Metric Tons of CO2-eq) 

5.72 0.85 1.52 1.55 2.34 

Annual Avoided Life-Cycle GHG Emissions 
(Million Metric Tons of CO2-eq) 

4.30 0.22 1.18 1.16 1.74 

Annual Electricity Consumption (TWh) 4.86 0.24 1.30 1.33 1.99 

 

 

 
Fig. S-13. Annual avoided life-cycle GHG emissions from switching to new BEV250 across different states. We use average 

emission factor in each state and vehicle and battery life-cycle emissions. 
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