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ABSTRACT: Spatially explicit urban air quality information is
important for developing effective air quality control measures.
Traditionally, urban air quality is measured by networks of
stationary monitors that are not universally available and sparsely
sited. Mobile air quality monitoring using equipped vehicles is a
promising alternative but has focused on vehicle-level experiments
and lacks fleet-level demonstration. Here, we equipped 260 electric
vehicles in a ride-hailing fleet in Beijing, China with low-cost
sensors to collect real-time, spatial-resolved data on fine particulate
matter (PM2.5) concentrations. Using this data, we developed a
decision tree model to infer the distribution of PM2.5
concentrations in Beijing at 1 km by 1 km and 1 h resolution.
Our results are able to show both short- and long-term variations
of urban PM2.5 concentrations and identify local air pollution hotspots. Compared with a benchmark model that only uses data from
stationary monitoring sits, our model has shown significant improvement with the coefficient of determination increased from 0.56
to 0.80 and root mean square error decreased from 12.6 to 8.1 μg/m3. To the best of our knowledge, this study collects the largest
mobile sensor data for urban air quality monitoring, which are augmented by state-of-the-art machine learning techniques to derive
high-quality urban air pollution mapping. Our results demonstrate the potential and necessity of using fleet vehicles as routine
mobile sensors combined with advanced data science methods to provide high-resolution urban air quality monitoring.

Ambient air pollution has become a major threat to public
health in both developed and developing countries.1,2

Today, 91% of the world’s population lives in areas where air
pollution exceeds the limits of the World Health Organization
(WHO) guidelines.3 Notably, the majority of air pollution-
related health impact occurs in urban areas where more than
half of the world’s population lives.4

Improving urban air quality requires air pollution measure-
ments and monitoring, but site-based urban air pollution
monitoring is limited worldwide. Robust air pollution
observations are largely absent in many developing countries.5

In more affluent regions, fixed-site ambient air pollution
monitors are also sparse, primarily due to high cost and space
limitation.6−9 For example, there are 17 continuous regulatory
monitors in the New York metropolitan area, with one per 1.2
million people and 526 km2.10 In Beijing, China, there are
currently 35 continuous regulatory monitors with approx-
imately two per million people and 1000 km2. On the other
hand, the spatial and temporal distribution of air pollutants can
vary greatly over short distances and periods due to uneven
distribution of emission sources and complex physical−
chemical transformations, especially in populous urban
areas.11,12 Such heterogeneous spatiotemporal distribution is
not well captured by the traditional fixed-site stationary
monitoring system with sparse observations. The lack of

understanding of the spatiotemporal distribution of air
pollutants can significantly affect air quality control, exposure
assessment, and environmental justice.11,13,14

A variety of methods have been used to improve the
spatiotemporal coverage and resolution of air quality
monitoring, but still with various limitations. Air quality data
estimated from satellite remote sensing is usually spatially
coarse (>1−10 km resolution)15 and frequently unavailable
(e.g., due to cloud covering).16−18 Physical and chemical
models such as dispersion models and chemical transport
models can offer high fidelity, but tend to be computationally
expensive and highly rely on the quality of underlying emission
inventories.19−23 Geostatistical methods such as land use
regression can provide estimations with high spatial resolution,
but lack sufficient temporal resolution and relies on the
availability of updated local land-use data.24−28

Received: December 1, 2020
Revised: March 13, 2021
Accepted: March 15, 2021
Published: March 24, 2021

Articlepubs.acs.org/est

© 2021 American Chemical Society
5579

https://doi.org/10.1021/acs.est.0c08034
Environ. Sci. Technol. 2021, 55, 5579−5588

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
M

IC
H

IG
A

N
 A

N
N

 A
R

B
O

R
 o

n 
Ju

ly
 2

1,
 2

02
1 

at
 0

1:
39

:5
4 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bu+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Long+Yu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chunyan+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chenyang+Shuai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ji+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shen+Qu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Morteza+Taiebat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ming+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.0c08034&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c08034?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c08034?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c08034?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c08034?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c08034?fig=abs1&ref=pdf
https://pubs.acs.org/toc/esthag/55/8?ref=pdf
https://pubs.acs.org/toc/esthag/55/8?ref=pdf
https://pubs.acs.org/toc/esthag/55/8?ref=pdf
https://pubs.acs.org/toc/esthag/55/8?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.0c08034?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf


Mobile sensing using equipped vehicles has been considered
as a cost effective and operationally viable alternative to
provide real-time, high-resolution air quality measures within
cities and neighborhoods.6,7,29,30 Traditionally, mobile air
quality monitoring has been done using lab-grade equipment
(i.e., mobile labs) operated by trained staff. Due to the high
operating and maintenance cost, these equipped vehicles are
sparsely deployed (e.g., one or two for a city) on fixed routes
for a limited period. Thus, the spatial coverage and resolution
are still not sufficient for high-resolution, real-time air pollution
monitoring (i.e., only one or two data points at each timestamp
across the entire city). As a result, large-scale, continuous
application of mobile air quality monitoring is still limited.
Alternatively, low-cost sensors can be used to equip a larger
number of vehicles for larger spatial coverage and higher
resolution. However, such studies are rare in the literature and
data obtained from low-cost sensors are not necessarily
accurate, thus cannot be directly used to infer air quality
distribution.31

Here, we address these challenges of mobile air quality
monitoring by exploring the potential of combining a large
network of low-cost mobile sensors and state-of-the-art
machine learning techniques. Specifically, we equipped a
total of 260 electric vehicles in a ride-hailing fleet in Beijing
with low-cost sensors to collect real-time, spatial-resolved data
on fine particulate matter (PM2.5) concentrations in two 1
month experiments with one in winter and the other in
summer. After filtering out incomplete and erroneous data, the
resulting dataset has almost 28 million data points each of
which includes a record of the PM2.5 concentration, the
location (latitude and longitude), and time of the record.
Using these data and the publically available hourly average
PM2.5 concentration data from regulatory monitoring stations,
we develop a machine learning model to infer PM2.5
concentrations for the core urban area of Beijing (within the
Sixth Ring Road) at 1 km by 1 km and 1 h resolution. We
demonstrate that our model shows superior performance in
inferring urban air quality distribution when compared with a
baseline model only using stationary monitoring data and
other machine learning techniques. To the best of our
knowledge, our study collects the largest amount of mobile
sensing data for urban air pollution monitoring. Our results
demonstrate the potential and necessity of mobile monitoring
using low-cost air quality sensors and provide evidence for
developing effective urban air pollution control strategies.

■ METHODS AND MATERIALS
Study Area. We focus on the area within the Sixth Ring

Road in Beijing (Figure S4), which covers about 3363 km2 and
is the core administrative, business, and residential area in
Beijing. A total of 22 regulatory air quality monitoring stations
and 35 meteorological stations are located in this area (Figure
S1). The study area has a population of over 16 million32 with
high population density (∼5000/km2), complex road structure
(∼10,826 km total road length), and diverse land use types (35
types). This area regularly suffers from severe air pollution.
The largest source of locally generated PM2.5 emissions in this
area is vehicle emissions followed by road and construction
dust.33 We conducted two mobile monitoring campaigns from
December 22, 2018 to January 26, 2019 (winter) and July 2,
2019 to August 11, 2019 (summer) in Beijing.
Mobile Monitoring Campaign. A two-phase mobile

monitoring campaign for PM2.5 pollution was conducted in the

study area in winter and summer. During the first-phase
(winter) monitoring, 100 fleet vehicles (electric vehicles to
minimize pipeline emissions) were equipped. BR-SMART
sensors from BRAMC Medical & Technology Co. Ltd.
(Beijing, China) were used as mobile monitoring probes.
This mobile sensor is capable of continuously collecting on-
road PM2.5 concentrations at 1 min frequency for 6−8 h
(powered by battery). The first phase was conducted from
December 22, 2018 to January 26, 2019 and yielded a total of
392,295 min of data. A total of 256,782 min (65.5%) of data
remained after removing GPS and sampling errors. The relative
low data recovery rate is mainly due to the misoperation by the
drivers (e.g., forgetting to turn off the device during charging,
out of battery). For the second phase, 160 fleet vehicles (also
electric vehicles) were equipped. XD-YL-1 sensors from Elklin
Technology Co. Ltd. (Xi’an, China) were used. This
customized mobile sensor is capable of continuously collecting
on-road PM2.5 concentrations at 3 s frequency when the
vehicle is operating using on-board charging. The second phase
was conducted from July 2 to August 11, 2019 and collected
34,012,344 observations, equivalent to 1,700,617 min of data.
After data preprocessing, 27,621,091 (81.2%) observations
remained. In both phases, the sensors were mounted on the
top end of the vehicles, which were operating as normal to
provide ride-hailing services. The sensors were mounted in a
way that the air inlet faced backward to avoid the effect of
headwind and the exhaust from the vehicle in front of the
equipped vehicle. Both sensors were calibrated during
production and adjusted again before installation. The
accuracy of the sensors was also validated by comparing with
PM2.5 concentration data from collocated stationary monitors.
More details about the sensors parameters, installation, and
calibration can be found in the Supporting Information
(Figures S2−S4).

Data Collection. The study area is divided into 57 by 59
(3363 in total) 1 km by 1 km grids based on the sampling
frequency of the sensors and the number of grids that can be
covered in each hour by the mobile monitoring campaign
(Figure S5). A variety of data are collected and allocated to
each grid. Hourly PM2.5 concentration data during the study
periods are collected from the 22 stations located in the study
area. These stations are administered by the National
Meteorological Information Center (NMIC) and provided
hourly concentrations of particulate matters (PM2.5, PM10) and
inorganic gaseous pollutants (CO2, CO, SO2, and NOx). We
consider the hourly PM2.5 concentration data from the
stationary monitoring as the ground truth. Road network
data are collected from OpenStreetMap (OSM, https://www.
openstreetmap.org) with extracted features including road type
(primary road, secondary road, tertiary road, motorway, and
trunk), length, and the number of intersections. Meteorological
data are from the 35 meteorological stations administrated by
the China Meteorological Administration (CMA) and Beijing
Meteorology Bureau, including hourly air pressure, temper-
ature, relative humidity, wind direction, and speed. Land use
data include the area of land in each of the 35 types (e.g.,
building, factory, and commercial) in each grid. Traffic volume
is approximated by the average speed (km/h) for the equipped
vehicles in real time. Additional details for these data can be
found in Table S1.
The collected mobile monitoring data include real-time

PM2.5 concentrations, timestamp, and location (longitude and
latitude). First, we remove outliers including abnormal extreme
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values such as those data with geolocation outside the study
area.34 Next, we allocate the remaining data into 57 by 59
(3363 in total) 1 km by 1 km grids. In theory, the vehicle could
travel from one grid to another within one measurement cycle,
but the number of cross-grid cases in our sample is small in
both sampling phases (14.6% in the first phase and 0.7% in the
second phase). Data in each grid are then aggregated into 1 h
median and mean to match the sampling frequency of the
stationary monitoring, which provides the ground truth. The
aggregated data calculated by less than 2 observations with 1
min sampling frequency and 40 observations with 3 s sampling
frequency (equivalent to 2 observations with 1 min sampling
frequency) are removed to avoid extreme values due to few
observations (Figure S8). This minimal number of observation
needed in a single grid that also restricted the spatial resolution
can be applied. Finally, we have the following data for each
grid-hour: (1) location: latitude and longitude of the center of
each grid; (2) road network: the length of five types of road
and number of intersections in each grid; (3) meteorological
data: hourly air pressure, temperature, relative humidity, wind
direction, and speed from the nearest meteorological station;
(4) land use: the size of each of the 35 land-use types in each
grid; (5) stationary monitoring data: hourly PM2.5 concen-
trations from the nearest monitoring station; and (6) mobile
monitoring data: hourly median, mean, first and third quartiles,
minimum, and maximum of PM2.5 concentrations, the average
speed of the equipped vehicle, and the number of mobile
monitoring observations.
Model Construction. One common challenge faced by

urban air quality mapping is the lack of continuous regulatory
monitors to provide a spatially distributed benchmark as the
ground truth. In our study area, there are only 22 continuous
regulatory monitors located in 22 grids, leaving the other 3341
grids without ground truth measures to evaluate and validate

air quality mapping. Here, we address this challenge by
transforming the mobile monitoring data to approximate the
ground truth in grids without stationary monitoring data.
Specifically, we first develop a transformation model to predict
the hourly stationary monitoring results (ground truth) by
using mobile monitoring data in the same grid during the same
hour (grid-hour). We then use the tested model to estimate
hourly PM2.5 concentrations for grid-hours with mobile
monitoring data available but without stationary monitoring
data. The estimated values are used as proxies of the ground
truth in these grid-hours for developing the PM2.5 mapping
model for the entire study area in the next step.
The mobile monitoring data and stationary monitoring data

within the same grid-hour are used to construct the data
transformation model. Our central hypothesis is that the
mobile monitoring data represent the distribution of PM2.5
concentration for a specific grid, which is also affected by the
number of mobile observations, local characteristics, and
meteorological conditions. Thus, we use the summary statistics
of the mobile monitoring data (i.e., hourly median, mean, first,
and third quartiles of PM2.5 concentrations), meteorological
data, and land use data as input variables to construct the
transform model. The model is then tuned based on the
average relative importance (Figure S9) and the results from
10-fold cross-validation to avoid overfitting. Model hyper-
parameters are optimized by choosing the set that minimizes
RMSE in 10-fold cross-validation. We developed two separate
data transformation models with different hyperparameters for
the PM2.5 concentration data collected from the two
experiment phases (details in the Supporting Information).
We used 70% of the data as the training set and the rest 30% as
the test set.
For urban air quality inference, the PM2.5 concentration of a

given grid may be affected by local features such as land use

Figure 1. Spatial and temporal characteristics of the mobile monitoring data. (a) Number of mobile monitoring samples in each hour. The
difference between the two monitoring phases is due to different sampling frequencies (1 min in winter and 3 s in summer); (b) spatial coverage
(2621 grids) is 78% of the entire study area. Due to range limitation of the electric vehicles, most of the samples are located within the Fifth Ring
Road; (c) probability density plot for the grids covered by different number of hours of mobile monitoring campaign; (d) distribution of the
differences of hourly average PM2.5 concentrations of two adjacent grids with the same timestamp; and (e) distribution of the differences of hourly
average PM2.5 concentrations of the same grid in two consecutive hours.
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characteristics, traffic, and road network, as well as external
factors such as meteorological information, which can affect
regional pollutants transport and local pollutant deposition. In
addition, the PM2.5 concentration of a given grid is also
temporally and spatially correlated to its adjacent units in the
space−time domain. A variety of methods are used to
construct the inference model, and the needed predictors are
selected through a backward elimination procedure (i.e.,
removing the variables with relative importance less than
5%). Finally, the PM2.5 concentrations from the nearest 4
mobile observations, nearest 3 stationary observations during
the same hour (i.e., spatial neighbors), and nearest mobile
observation during the last hour (i.e., temporal neighbor),
meteorological data, land use data, and road network data are
selected as input variables. The model is then tuned based on
their average relative importance (Figure S10) and the results
from the 10-fold cross-validation to avoid overfitting. We also
developed two separate models for air quality inference with
different hyperparameters for the PM2.5 concentration data
collected from the two experiment phases. The results showed
similar accuracy of PM2.5 concentrations mapping with an R2 of
0.786 and 0.804, indicating the validity of training a single
model utilizing all data collected. In addition, a single model
trained using data collected in different seasons (winter and
summer) can help the general application of the model across

different levels of PM2.5 concentrations. Model hyperpara-
meters can be found in the Supporting Information. We used
70% of the data as the training set and the rest 30% as the test
set.

■ RESULTS

After removing erroneous data, we have a total of 27,877,873
data pointsequivalent to 1,637,837 min of observation
(Figure 1a). The observations are mainly concentrated
between 10:00 a.m. and 23:00 p.m. (Figure S1). In the 1 km
by 1 km gridded study area (3363 km2), our mobile
monitoring data cover about 78% of the grids (Figure 1b).
However, at any given hour, on average, only 152 grids (4.5%,
Figure S1) are monitored by mobile sensors due to the limited
number of equipped vehicles and the uneven temporal
distribution of the monitoring data.
The PM2.5 concentrations recorded by the mobile sensors

vary greatly across space and time. Figure 1d shows the
distribution of the PM2.5 concentration differences between
two adjacent grids with the same timestamp, with about 20%
higher than 10 micrograms per cubic meter (μg/m3). The
WHO recommends 10 μg/m3 as the threshold for PM2.5
emissions that pose health risks,3 and several cohort studies
have confirmed that a 10 μg/m3 increase for both short-term

Figure 2. Comparison between stationary and mobile monitoring data before and after data transformation. (a) Before the transformation, the
Pearson correlation coefficient between stationary and mobile monitoring data in the same grid during the same hour is 0.64 with a high RMSE
(35.17). After the transformation, the correlation increases significantly and the RMSE drops to 8.78 and 14.33 on the training set (b) and test set
(c), respectively.
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and long-term PM2.5 can significantly increase the all-cause
mortality as well as respiratory and cardiovascular disease
hospitalizations.35−39 As a comparison, the annual average
PM2.5 concentration in Beijing is 50 μg/m3 in 2018,40 which
indicates that the variances observed in our mobile monitoring
data are significant.
Similarly, Figure 1e shows the distribution of PM2.5

concentration differences for the same grid between two
consecutive hours, with more than 40% over 10 μg/m3. These
results confirm that local PM2.5 concentrations in urban areas
varies greatly in relatively small temporal and spatial scales,
possibly driven by a combination of factors including the
complex urban structure, nonuniform distribution of multiple
emission sources, and spatially and temporally varying human
activities.6,11,12

As shown in Figure 2a, there is a relatively high correlation
(Pearson correlation coefficient: 0.64) between the hourly
PM2.5 concentration data from the stationary monitors and
mobile monitoring data in the same grid-hour. In general, the
PM2.5 concentration measure from mobile sensors is higher
than that from stationary monitorsroot mean square error
(RMSE) is 35.17, which is likely due to the pipeline emissions
from nearby vehicles.
We developed and tested various machine learning models

to predict the hourly stationary monitoring results by using
mobile monitoring data in the same grid-hour. Specifically, we
predict hourly PM2.5 concentrations from stationary monitors
using mobile monitoring data from the same grid-hour and
corresponding meteorological and land use data as predictors
(details in the Supporting Information). Based on the model
performance (Table S1), the gradient boosting model using
the extreme gradient boosting (XGBoost) algorithm is chosen
to construct the transformation model. We randomly split the
data into a training set (70%) and a test set (30%). The
training set is used to train the model and the test set is only
used to test the performance of the model. As shown in Figure
2b,c, the correlation between the predicted PM2.5 concen-
tration and the stationary monitoring data becomes much
higher, with the Pearson correlation coefficient of 0.95 and
0.87 on the training set and test set, respectively. In addition,
the difference of the predicted results from the stationary
monitoring data becomes much smaller, with an RMSE of
14.33 and a coefficient of determination (R2) of 0.76 on the
test set.
Using this model, we estimate hourly PM2.5 concentrations

for grid-hours with mobile monitoring data available but
without stationary monitoring data as a proxy for the ground
truth. As a result, we substantially expand the spatial coverage
of our benchmarks with 78% of the grids in the study area.
Next, we use the expanded dataset to predict PM2.5
concentrations in grid-hours without any monitoring data.
Model Performance. We develop and test various

machine learning models to predict PM2.5 concentrations in
grid-hours without either stationary or monitoring data. The
model input variables include hourly PM2.5 concentration data
from the nearest 3 stationary monitors and 4 mobile monitors
in the same hour, hourly concentration from the nearest
mobile monitor in the last hour, and additional variables on
land use, road networks, and meteorological data (details in
the Supporting Information).
For each model, 10-fold cross-validation is applied with 70%

of the data are used as the training set and the rest 30% as the
test set in each fold. The performance of these models is

compared using mean absolute error (MAE), RMSE, and R2.
As shown in Table 1, decision tree models, XGBoost and

random forest (RF), perform the best on all three metrics.
Overall the XGBoost and RF models have similar performance,
but XGBoost is less computational intensive due to the
parallelization of tree construction.41

Using the mobile monitoring data can significantly improve
the model performance. For example, the MAE and RMSE of
the XGBoost model can be reduced from 6.7 to 4.7 and 12.6 to
8.1, respectively, and the R2 can be improved from 0.56 to
0.80. Note that the XGBoost model without using any mobile
monitoring data can well infer the hourly PM2.5 concentration
on grids where stationary monitoring data are available (R2 =
0.92, Figure S2). The high accuracy is mainly due to the high
correlations between monitoring data at different stations
(Figure S3). However, when the same model is applied to grids
where stationary monitoring data are not available, the model
performs much worse (R2 = 0.56, Figure 3a). This is mainly
due to the lack of variation in the input variables, as the input
variables are the same for many grid-hours with the same
nearest three stationary monitors. After adding the mobile
monitoring data as an additional input to the model, the
prediction accuracy is greatly improved (R2 from 0.56 to 0. 80,
Figure 3b) as anticipated.
To understand how the mobile monitoring data improves

the model performance for different grids, we divided the grids
into four categories: (1) the grids close to stationary monitors
(<5 km) and with nearby mobile monitoring observations (<5
km), (2) the grids close to stationary monitors but without
nearby mobile monitoring observations (> = 5 km), (3) the
grids away from stationary monitors but with nearby mobile
monitoring observations (> = 5 km), and (4) the grids away
from stationary monitors and without nearby mobile
monitoring observations. As shown in Table 2, overall, the
use of mobile monitoring data can improve model perform-
ance. The largest improvement comes from the grids away
from stationary monitors but with nearby mobile monitoring
observations (R2 increased from 0.60 to 0.82), which is also the
majority of the grids (90.3%). In addition, we also tested the
robustness of our model by adding a random noise generated
from the uniform distribution U(−1,1), U(−5,5), and
U(−20,20), to the raw mobile monitoring data. The
experiments were repeated 1000 times. After adding the
noise, our model can still map the distribution of PM2.5
concentrations with an R2 range from 0.786 to 0.808 (median:
0.800), 0.702 to 0.789 (median: 0.766), and 0.682 to 0.734
(median: 0.721), which demonstrates the robust of our model.
We then used the XGBoost model to map the PM2.5

emissions in our study area at a specific time to further

Table 1. Model Performance Comparisona

methods MAE RMSE R2

extreme gradient boosting (XGBoost) 4.7 8.1 0.80
XGBoost (without mobile monitoring data) 6.7 12.6 0.56
random forest (RF) 5.1 8.3 0.79
RF (without mobile monitoring data) 7.1 12.9 0.55
spatial interpolation (SI) 7.1 12.8 0.55
K-nearest neighbors (KNN) 7.8 13.6 0.53
support vector regression (SVR) 6.0 12.4 0.59
artificial neural network (ANN) 5.3 9.6 0.70

aDetails of each model are in the Supporting Information.
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compare the results with and without mobile monitoring data.
As depicted in Figure 3c, the inferred distribution of the PM2.5

concentration from the model using mobile monitoring data
shows great spatial heterogeneity that is consistent with the
model performance. However, the mapping of PM2.5 emissions
without using mobile monitoring data consists of several large
clusters without sufficient spatial heterogeneity (Figure 3d).
This is mainly because without the mobile monitoring data, the
model inputs for each grid are largely similar without
significant variations (e.g., meteorological data, PM2.5 concen-
tration data from the nearest stationary monitors). The mobile
monitoring data can provide the spatial variations as the model

input that is needed to infer the spatial heterogeneity of PM2.5

emissions.
Mapping PM2.5 Emissions across Space and Time.

Figure 4 depicts the inferred spatial and temporal distribution
of PM2.5 emissions on a typical weekday in winter (December
31, 2018, Wednesday) in Beijing. We can easily identify a
pollution hotspot in southeastern Beijing and the diffusion
toward north and west throughout the day. This is consistent
with the fact that there was a southeasterly wind of 1.864 mph
after 12 p.m. according to the China Meteorological
Administration (CMA).42 In addition, a nearby monitoring
station (Yongledian) that is just outside of our study area in

Figure 3. Performance between XGBoost models with (a) and without (b) using mobile monitoring data as an input; and spatial distribution of
inferred PM2.5 concentrations of the central areas (34 × 34 km2) of Beijing at 12:00 p.m. on January 12, 2019, obtained from the model with (c)
and without (d) mobile monitoring data.

Table 2. Model Performance on Different Grids

XGBoost (with mobile
monitoring data)

XGBoost (without mobile
monitoring data)

grids types based on distance/models proportion of data in test set MAE RMSE R2 MAE RMSE R2

stationary monitors (<5 km) and mobile monitors (<5 km) 8.7% 2.8 4.7 0.93 2.9 4.8 0.92
stationary monitors (<5 km) and mobile monitors (>5 km) 0.9% 4.7 7.6 0.80 3.9 6.9 0.84
stationary monitors (>5 km) and mobile monitors (<5 km) 90.3% 4.6 7.3 0.82 5.1 8.3 0.60
stationary monitors (>5 km) and mobile monitors (>5 km) 0.1% 7.1 14.8 0.55 5.1 8.3 0.32
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the southeast also reported a high PM2.5 concentration on the
same day from 0:00 to 8:00, which is close to our model result
for the observed hotspot (Figure S11 and S12).
Figure 5 shows the distribution of the long-term average

PM2.5 concentration in the study area during the two
experiments inferred by our model. Clearly, there was a great
spatial variation for the long-term PM2.5 concentration.

Overall, the average PM2.5 concentration was significantly
higher in the winter experiment (72.8 μg/m3) than in the
summer one (41.2 μg/m3). These results are validated by
atmospheric studies for the same periods (winter: 40−85 μg/
m3; summer: 23−57 μg/m3).40,44,45 Such a seasonal pattern is
also confirmed by atmospheric studies, mainly due to
meteorological conditions and regional transport of air

Figure 4. Hourly PM2.5 concentration distribution on a typical weekday in winter (December 31, 2018) in Beijing inferred by our model, with real-
time images from The Beijing News43 for comparison.

Figure 5. Spatial-resolved daily average PM2.5 concentration inferred in this study in winter (2018.12.31−2019.1.3) and summer (2019.8.2−
2019.8.5) in Beijing, with daily average PM2.5 concentration values from stationary monitors for the same periods highlighted as numbers.
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pollutants.40,44,46 For the winter experiment, the south and east
areas were more polluted. This is consistent with long-term
monitoring conducted in Beijing, which shows that admin-
istrative district Daxing (Southeast) had the highest average
PM2.5 concentration and Changping (Northwest) had a much
lower concentration.47,48 These results are also confirmed by
multiple hypothesis tests (P < 0.0167)49 and regression
analyses (negative gradient from south to north).50 During the
summer, the average PM2.5 concentration of different regions
in Beijing was comparable with no significant differences, also
confirmed by previous studies.51 The central area had a slightly
higher PM2.5 concentration likely due to more traffic and heat
island effects.52 However, these previous atmospheric studies
are based on point observations of stationary monitors, thus
lacking the spatial resolution generated from our model. Our
method can complement atmospheric studies to provide
important spatiotemporal distribution of air pollutants at a
resolution that cannot be differentiated in previous studies.

■ DISCUSSION
The XGBoost model we developed in this study can infer the
spatiotemporal distribution of urban air pollutants using large-
scale mobile monitoring data obtained from equipped fleet
vehicles. We apply the model in Beijing for PM2.5 emissions in
two 1 month experiments. Our results show that the model can
infer the spatial distribution of PM2.5 emissions at 1 km by 1
km resolution on an hourly average with an R2 value of 0.8 and
an RMSE of 8.1 μg/m3. The resulting spatiotemporal
distribution of PM2.5 emissions clearly identifies emission
hotspots and the transitions of hotspots throughout a day. We
also show the superior performance of the model using the
mobile monitoring data compared to without using it. Our
results demonstrate the potential and necessity of mobile
monitoring with low-cost air quality sensors for urban air
quality monitoring with a high spatiotemporal resolution that
is needed for effective air quality control measures.
Although similar studies exist on urban air quality mapping,

we cannot make direct comparisons due to different local
characteristics, sample size, and modeling methods. However,
based on typical model performance metrics, our model is at
least comparable, if not superior, to other models with similar
purposes. Specifically, our model’s R2 is 0.8, which is better
than that of Zheng et al. (overall classification accuracy of
0.75),24 Adam and Kanaroglou (R2 of 0.78, but without
validation with stationary monitoring data or equivalent
data),25 and Lim et al.(R2 ranging from 0.63 to 0.80 but
with a shorter period of mobile monitoring campaign of about
12 days),27 similar to Song and Han (R2 ranging from 0.89 to
0.91 but with much less mobile monitoring observations
collected from 15 vehicles).53

Our experience with the mobile monitoring campaign
indicates the importance of reducing the need for drivers
operating the sensors to improve data quality. The ideal case is
to have fully automated sensors that do not require manual
operations, are robust in extreme environmental conditions
such as on rainy or windy days, and do not interfere with the
regular operation of the vehicle.
The spatial and temporal coverage of the mobile monitoring

data is the key to construct the machine learning model. Due
to limited stationary monitors in our study, we extend the
benchmarks to use transformed mobile monitoring data as a
proxy for the ground truth. However, the spatial and temporal
coverage is still not ideal given a limited number of equipped

vehicles and their relatively constrained operation time and
areas due to range limits (electric vehicles). The majority of
the study area only has a very limited number of observations,
and about 20% of the area does not have any data. Additional
ground truth information with accurate PM2.5 monitoring data
(either stationary or mobile) can greatly improve and further
validate the model.
We recruited 260 electric vehicles in this study only based

on budgetary and operational constraints. Theoretically, with
more vehicles equipped with mobile sensors, our model can be
further improved. However, it is not clear how many equipped
vehicles are sufficient for a particular city. Future study should
examine the relationship between the model performance and
characteristics of the equipped vehicle fleet (e.g., number of
vehicles, spatial and temporal coverage of the vehicle
trajectories) to optimize the composition of the equipped
vehicle fleet for the best model performance considering
budgetary and operational constraints.
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