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ARTICLE INFO ABSTRACT

The U.S. household consumption, a key engine for the global economy, has significant carbon footprints across
the world. Understanding how the U.S. household consumption on specific goods or services drives global
greenhouse gas (GHG) emissions is important to guide consumption-side strategies for climate mitigation. Here
we examined global GHG emissions driven by the U.S. household consumption from 1995 to 2014 using an
environmentally extended multi-regional input-output model and detailed U.S. consumer expenditure survey
data. The results show that the annual carbon footprint of the U.S. households ranged from 17.7 to 20.6 tCO.eq/
capita with an expanding proportion occurring overseas. Housing and transportation contributed 53-66% of the
domestic carbon footprint. Overseas carbon footprint shows an overall increasing trajectory, from 16.4% of the
total carbon footprint in 1995 to the peak of 20.4% in 2006. These findings provide valuable insights on the
scale, distribution, and variations of the global GHG emissions driven by the U.S. household consumption for
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developing consumption-side strategies in the U.S. for climate mitigation.

1. Introduction

Household consumption is an important contributor to greenhouse
gas (GHG) emissions. Roughly 20% of global GHG emissions in 2007
were generated directly from household consumption, mostly from fuel
use for heating, cooling, cooking, and operating private vehicles
(Ivanova et al., 2016). More importantly, a significant amount of GHG
emissions are generated in the supply chains of goods and services
consumed by households. Because many household consumables have
globalized supply chains, emissions driven by household consumption
can happen overseas, commonly known as emissions embodied in trade
(Peters and Hertwich, 2008). Globally, the carbon footprint of house-
hold consumption—GHG emissions both directly generated and in-
directly driven by household consumption—is about 72% and 60% of
the global GHG emissions in 2001 (Hertwich and Peters, 2009) and
2007 (Ivanova et al., 2016), respectively.

At the national level, household consumption is also frequently re-
ported to contribute significantly to GHG emissions of nations. For
example, the carbon footprints of Norwegian household consumption
increased by 26% from 1999 to 2012 (Steen-Olsen et al., 2016). Con-
sumption on transport, housing, and food are reported to contribute to
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61-65% of household expenditures, responsible for 77-80% of per ca-
pita GHG emissions in the Baltic States (Brizga et al., 2017). These
studies examining the carbon footprint of household consumption helps
develop demand-side strategies for climate mitigation by motivating
behavioral changes in household consumption towards less carbon-in-
tensive products and lifestyles.

The quantification of global GHG emissions driven by a nation's
consumption is usually done using environmentally extended multi-
regional input-output modeling (EE-MRIO) (Liang et al, 2016;
Wiedenhofer et al., 2017; Wiedmann, 2009). For example, the U.S.
carbon footprint has shown a territorial growth of 23% and a con-
sumption-based growth of 38%, doubled during the last four decades
(Kanemoto et al., 2016). Nearly 30% of the carbon footprint of the U.S.
household consumption in 2004 occurred outside the U.S. (Weber and
Matthews, 2008a). Despite the valuable insights these studies provide,
the practical usefulness suffers from the coarse-grained sectoral re-
solution in EE-MRIO models. To address this issue, consumer ex-
penditure survey (CES) data are increasingly integrated with EE-MRIO
models to allocate global GHG emissions to consumption categories at
finer categories (Steen-Olsen et al., 2016). Specifically, CES reports data
on household purchases at a detailed product level (Fernandez-
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Villaverde and Krueger, 2007). Linking CES and EE-MRIO allows the
assessment of the complete household environmental footprint without
complex bottom-up analyses of every single household expenditure
category (Steen-Olsen et al., 2016). For example, (Druckman and
Jackson, 2009) linked CES data with EE-MRIO to examine the en-
vironmental implications of nine categories of household expenditures
in the UK in 1990-2004. (Ivanova et al., 2017) examined emissions
from aggregated 14 consumption categories in the EU nations using CES
data and EE-MRIO. Additional information of households such as
household size and income levels provided by CES are also linked with
EE-MRIO to examine their environmental implications (Steen-Olsen
et al., 2016; Wiedenhofer et al., 2017).

The U.S. had been the world's largest GHG emitter for a very long
time until 2006 when surpassed by China (Guan et al., 2009). Over 20%
of the U.S. GHG emissions are directly attributed to household con-
sumption in 2005, more than 80% if considering indirect emissions
driven by household consumption (Jones and Kammen, 2011). World-
wide, the U.S. household consumption is estimated to drive approxi-
mately 20% of the global GHG emissions in 2001 (Hertwich and Peters,
2009). Given the importance of the U.S. consumers to the world
economy, understanding how global GHG emissions have been driven
by the U.S. household consumption helps develop demand-side climate
mitigation strategies for not only the U.S. itself but also the world. Such
demand-side strategies have become particularly important since the
U.S. withdrawal from the Paris Agreement which makes non-state ac-
tors, whose carbon footprints are largely driven by consumption, the
main force for climate actions in the U.S. (Feng et al., 2015; Jacquet and
Jamieson, 2016).

To provide better understanding of the carbon footprint of the U.S.
household consumption, many studies have incorporated CES data for
detailed characterization of consumption categories (Bin and
Dowlatabadi, 2005; Jones and Kammen, 2014, 2011; Weber and
Matthews, 2008a). However, these studies all focused on linking the
U.S. household consumption with GHG emissions within the U.S. To
date, little is known how detailed categories of U.S. household con-
sumption drive GHG emissions at the global scale. Here we quantify the
GHG emissions driven by the U.S. household consumption at a fine
consumption category and the global distribution of these emissions
from 1995 to 2014 using the U.S. CES data combined with the EE-MRIO
model from World Input-Output Database (WIOD) (Timmer et al.,
2016). Our results shed light on the global carbon footprint of the U.S.
household consumption and identify key consumption categories that
contributed most significantly to global GHG emissions. Further ana-
lysis also provides insight to better manage the emissions associated
with consumption and lifestyle changes. These findings help develop
effective consumption-side policies to reduce the carbon intensity of
household consumption in the U.S. for global climate mitigation.

2. Methods and data
2.1. Multi-regional input-output (MRIO) model

The Multi-regional input-output (MRIO) model serves to calculate
environmental pressures (e.g., GHG emissions) embodied in interna-
tional trade (Miller and Blair, 2009). It can trace emissions driven by
consumers by linking the upstream production and downstream con-
sumption in trade networks (Kitzes, 2013; Xu et al., 2011). In the MRIO
framework, sectors are connected by trade between countries and by
trade within countries, T"(r=s) and T™(r = s) respectively (Kanemoto
et al.,, 2016). To calculate the trade flow matrix T;", the technical
coefficient matrix (A™) is introduced, in which each element is given by
a;” = t;°/x;. i and j are sectors of origin and destination, and r and s
are exporting and importing countries. t;” means the money flow from
sector r in region i to sector s in region j.
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In the equations above, R denotes the total number of countries and
F denotes the total number of final demand categories.

The mathematical structure is AX+Y =X,
X=U-A"v.

where (I — A)™! is the Leontief inverse matrix (Leontief, 1986),
which captures both direct and indirect effects that one unit of the final
demand has on the output (Miller and Blair, 2009). This inverse matrix
multiplies a household's consumption vector y, so we get a total output
vector accounting for all the direct and indirect inputs triggered
throughout global supply chains by household's consumption. I is an
identity matrix with ones on the main diagonal and zeros everywhere
else.

rewritten as

2.2. Environmentally extended MRIO (EE-MRIO) model

For an EE-MRIO model, the total GHG emissions embodied along
the supply chain can be calculated by:

erio=EX(I_A)71XW

where E is emission intensity (the amount of emissions generated per
unit of output in each sector) and W is the household consumption.

The MRIO data in 1995-2014 are derived from the World Input-
Output Database (WIOD) (Timmer et al., 2016). From 1995 to 2011,
WIOD covers 35 economic sectors for 40 countries, including all the EU
(EU-27) member states and 13 of the world's largest economies. The
newly released Input-Output tables for the years of 2012-2014 covers
56 sectors in 44 regions. We aggregated the later version of IOT to be
consistent with 35 sectors and 40 countries. The 40 countries together
represent over 85% of the world's economy (Dietzenbacher et al.,
2013). Other countries are grouped in the Rest of the World (RoW).
This table links many single-region input-output tables into one con-
sistent account of intra-regional and inter-regional trade.

To calculate the emissions intensity, total emissions are derived
from the Environmental account in the WIOD database. The GHG
emissions after 2009 are estimated with fixed emission coefficient in
2009 due to data limitations. Three main GHGs including CO,, CHy,
and N,O are quantified in COs-equivalent (CO.eq) per year using
Global Warming Potential cumulative forcing over 100 years
(GWP100); the GWPs for CO,, CH4, and N,O are 1, 28, 265, respec-
tively (Intergovernmental Panel on Climate Change, 2014).

The double-deflation method was used for many studies in estima-
tion of the value added or GDP in constant prices (Lan et al., 2016;
Malik et al., 2016). Referring to this method, this study applies the price
index of gross output and the price index of intermediate input to the
current price in IOT in the base year 2009 for deflation purposes. The
deflation removes the change of emission intensity (CO»eq tons per unit
dollar) due to economic inflation. The price indices for the 40 countries
for each sector were derived from WIOD Socio Economic Accounts.

2.3. Direct use of energy
The MRIO method captures the direct and indirect emissions from

cradle to gate, i.e., upstream supply chain until the product is ready to
be used. However, it does not include the direct emissions from the use
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phase in household consumption, such as gasoline burning during car
driving and on-site natural gas burning during cooking. The total GHG
emissions are calculated by the sum of embodied emissions and direct
emissions, as follows:

Qrotal = Qurio + Qairect

The direct emission is calculated by the energy price and CO,eq
coefficients. The gasoline price in the U.S. for each year is derived from
the U.S. Department of Energy (U.S. Department of Energy, 2016). The
natural gas price for each year is from the U.S. Energy Information
Administration (U.S. Energy Information Administration, 2019). The
CO,, coefficients for natural gas and gasoline combustion are from the
Environmental Protection Agency (U.S. Environmental Protection
Agency, 2018). For consistency purpose, the direct emission coefficients
are expressed in the kgCO»-equivalent per dollar in the base year 2009.
Direct emissions from household are calculated as follows:

Qgirect = Gas X a + Petro X b

where a and b are CO coefficient in kgCO.eq/$(2009).
2.4. Household consumption

To analyze the GHG emissions from households in more detail, re-
cent studies use CES/IO method to bridge the input-out modeling and
consumer expenditures (Steen-Olsen et al., 2016). The current study
refers to this method to analyze not only the domestic emissions but
also emissions exerted on other countries driven by U.S. household
consumptions. The U.S. CES includes 13 parent categories and 74 sub-
categories (According to Glossary of Terms, each sub-category has a
detailed description containing several to dozens of items, and over 600
items in total). The classification of CES is based on product level but in
alignment Universal Classification Code (UCC). The CES data is linked
with sectors of the U.S. in the WIOD database which are based on the
Statistical Classification of Economic Activities in the European Com-
munity (NACE) that corresponds to the International Standard In-
dustrial Classification of All Economic Activities (ISIC) (Dietzenbacher
et al., 2013).

2.4.1. Types of consumption

The first step of this linkage is to aggregate 74 sub-categories in CES
into 16 categories that represent the main types of household con-
sumption, as shown in Supporting Information (SI) S1. Manually brid-
ging these two refers to the classification concordance between NAICS
and ISIC (U.S. Census Bureau, 2019). The 16 categories are based on the
13 parent categories which exist in the original CES table by ag-
gregating the service sectors and grouping large emission of ex-
penditures within housing with more details. For those types of con-
sumption in CES which correspond to more than one sectors in 10T,
they are allocated according to the proportion in the final demand
vector in IOT. It assumes that although each household varies from
another, the households' consumptions are similar to the national
household final demand on the national level.

The second step is to adjust the price in the CES. Consumer Price
Index (CPI) (a) is assigned for CES by product to deflate to the price in
the base year 2009. CPI for the 74 products is derived from the U.S.
Bureau of Labor Statistics. The closest substitution is applied for those
categories that have no available data in the corresponding year. The 16
categories of consumption with 35 industries in WIOTs. In the build-up
of the concordance matrix, data for wholesale and retail is derived from
the Annual Wholesale Trade Survey (AWTS) and Annual Retail Trade
Survey (ARTS) (U.S. Census Bureau, 2018a, 2018b). Tax and trans-
portation margins are also subtracted to adjust the purchaser's price to
basic price in correspondence with data in WIOD.

Previous studies used one concordance matrix for multiple years;
however, this assumption disregards the nuanced structural changes of
economies (Brizga et al., 2017). This study builds a concordance matrix
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for each year with price index adjustment. A country-level final demand
matrix by each type of consumption (W,,s) is expressed as follows:

Weons = H X Ceons

where H is a vector of final demand on households of the U.S., C.ons is
the concordance matrix (see Table S2) bridging the categories in IOT
and those in CES by types of consumption. The overseas final demand
structure is assumed to be the same as the domestic due to data lim-
itation.

2.4.2. Income groups

Following a similar process of building up a concordance matrix and
bridging the sectors in IOT and consumption structure, another con-
cordance matrix (see Table S3) is built up to bridge the categories in
IOT and different income groups (Wi,c).

Wine = H X Ciye

Households are divided into 13 groups of different incomes: less
than $5000 (< $5k), $5000-$9999 ($5-10k), $10,000-$14,999
($10-15k), $15,000-19,999 ($15-20 k), $20,000-$29,999 ($20-30 k),
$30,000-$39,999  ($30-40k), $40,000-$49,999  ($40-50k),
$50,000-$69,999 ($50-70k), $70,000-$79,999 ($70-80k),
$80,000-$99,999 ($80-100k), $100,000-$119,999 ($100-120k),
$120,000-$149,999 ($120-150k), and over $150,000 (> $150k).
Data of incomes below $70,000 are derived from table Income before
tax, and data of income above $70,000 are derived from table Higher
income before taxes. Only the mean values in the census statistics are
considered in this study. Data of household size and average persons in
a typical household are also from the Consumer Expenditure Survey
from 1995 to 2014.

3. Results
3.1. U.S. household carbon footprint in 2009

Our analysis reveals that 5.43 Gigaton of carbon dioxide equivalent
(GtCO2eq) GHG emissions (total carbon footprint) were generated
worldwide due to the U.S. household consumption in 2009, re-
presenting more than 15% of the global GHG emissions. Among the
total carbon footprint, 4.47 GtCO,eq GHG emissions occurred in the
U.S. (domestic carbon footprint), equivalent to 82.3% of the total U.S.
GHG emissions. The remaining 17.7% total carbon footprint or 0.96
GtCO,eq GHG emissions were generated outside the U.S. (overseas
carbon footprint).

We first assign carbon footprint of the U.S. household consumption
to five broad categories including food, housing, clothing, transporta-
tion, and services. Each of the five categories is then divided into sub-
categories to characterize consumption activities in more details (Table
S1).

Overall, the U.S. household expenditures on transportation (29.8%)
and housing (33.6%) contributed over 60% to the total domestic carbon
footprint in 2009 (Fig. 1a). Expenditures in services, food, and clothing
contributed 19.3%, 16.7%, and 0.1%, respectively. At the sub-category
level, utilities (electricity and onsite natural gas) and fuel use (mostly
gasoline and diesel) together contributed nearly 50% to the total do-
mestic carbon footprint. In contrast, expenditures in transportation by
the U.S. household contributed only 17% of its overseas carbon foot-
print, while housing became the most significant driver (34.7%)
(Fig. 1b). Among all sub-categories, food at home, furnishing and
supplies, and clothing are the three largest drivers, contributing to
40.8% of the total oversea carbon footprint of the U.S. household
consumption. Compared to contributions to domestic carbon footprint,
the U.S. household consumption on clothing, furnishing and supplies,
and electronic and machinery products contributed significantly more
to overseas carbon footprint than to domestic carbon footprint. Such
difference indicates that the supply chains of those products for the U.S.
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Fig. 1. Shares of domestic (a) and overseas (b) carbon footprint of the U.S. household consumption in 2009 by consumption categories.
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GHG emissions of each country/region. The most considerable portion
of overseas carbon footprint of the U.S. household consumption was
from China, contributing 27% or over 250 million tCOseq, followed by
Canada, India, Russia, and Mexico. Specifically, overseas carbon foot-
print from Mexico was largely driven by food consumption in the U.S.,
while fuel consumption in the U.S. was the main driver for overseas
carbon footprint from Russia and Canada. The GHG emissions driven by
the U.S. household consumption were the most significant to Canada,
Mexico, and Taiwan among all countries/regions, contributing to
12.6%, 8.1%, and 5.4% of their territorial GHG emissions, respectively,
in 2009. Although the most substantial amount of overseas carbon
footprint was from China, it was only 3.0% of China's territorial GHG
emissions in 2009. The majority of China's GHG emissions were for its
domestic consumption and consumption of other countries beyond the
U.S. (Davis and Caldeira, 2010; Feng et al., 2013).

We further group the U.S. household expenditures by 13 income
groups and allocate carbon footprint to each income group. As show in
Fig. 3a for 2009, carbon footprint generally increases with household
income, ranging from 19.3 to 91.5 tCOseq per household (hh). The
average carbon footprint of the wealthiest households is over five times
that of the poorest. Note that the average carbon footprint of the
poorest households (less than $5000 annual income) is higher than that
of households with $5000-$9999 annual income. This is because the
large number of households with annual income lower than $5000 are
college students whose expenditures are higher than those of

households with annual income between $5000 and $9999. Specifi-
cally, expenditures on education in households with less than $5000
annual income are more than twice as much as those for households
with annual income between $5000 and $9999.

The per capita carbon footprint also generally increases with
household income, ranging from 12.1 to 28.6 tCOxeq/cap, as shown in
Fig. 3b. Consumers with less than $30,000 annual household income
consists of 25.7% of the total population but were only responsible for
19.3% of the carbon footprint. On the other hand, wealthy consumers
with more than $100,000 annual household income accounted for
22.3% of the total population but were responsible for 31.2% of the
total carbon footprint of the U.S. household consumption. As income
increases, the share of carbon footprint from “consumption” of services
increases. Like what was observed for carbon footprint by households,
the carbon footprint of an average consumer from the poorest house-
holds (less than $5000 annual income) is larger than that from the
slightly more affluent households ($5000-$9999 annual income). The
difference was also mainly driven by higher average expenditures from
households with the lowest annual income.

3.2. U.S. household carbon footprint from 1995 to 2014

Fig. 4a shows that both domestic and overseas carbon footprint of
the U.S. household consumption had been steadily growing since 1995
until reaching a plateau in 2005-2008 at around 6.0 GtCOaeq,
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respectively. In 2009, the carbon footprint of the U.S. household con-
sumption dropped by 8.5% compared to that in 2008, mainly due to
declined consumption in the Great Recession. The share of overseas
carbon footprint in total carbon footprint of the U.S. household con-
sumption had increased from about 16% in 1995 and peaked at around
20% in 2006. After 2006, the share of overseas carbon footprint started
to decrease, an indication of slowing down imports before the recession.
After 2009, the share of overseas GHG emissions increased to over 20%
of the total GHG emissions, under circumstances of fixed emission
coefficient, suggesting the dominant role of increase in demand. On the
per capita basis, the U.S. household carbon footprint is over five times
the world average (3.4 tCOseq/cap in 2007 based on (Ivanova et al.,
2016)). As show in Fig. 4b, the per-capita carbon footprint of the U.S.
household remained stable between 19.5 tCO,eq/cap to 20.1 tCO,eq/
cap from 1995 to 2007 and then decreased to 17.7 tCO»eq/cap in 2009.
Interestingly, both total household carbon footprint and carbon foot-
print per capita peaked before the recession. This indicates that the U.S.
household carbon footprint has been decreasing already before the re-
cession, and the recession was not the only reason that reduces the U.S.
household carbon footprint. Besides, our estimation shows that after
2009, the total amount of GHG emissions increased, with expanding
carbon footprints overseas.

Among all consumption categories, consumption in utility and fuels
accounted for 30%-40% of the total carbon footprint of the U.S.
household during 1995 to 2014. Expenditures on food at home, health,
furnishing and supplies, and other services accounted for another
25%-35% of the total carbon footprint (Fig. 5a). Overall, household
expenditures in 16 categories are roughly clustered in 6 groups based
on their shares of overseas carbon footprint in total carbon footprint
(Fig. 5b):

1) Clothing expenditure had the largest share of overseas carbon
footprint, ranging from approximately 70% to 85%. In other words,
about 70% to 85% of the carbon footprint of for the U.S. household
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consumption in clothing occurred in other countries from the upper
supply chain.

2) Electronics expenditure was ranked second in the shares of overseas
carbon footprint, increasing from about 55% to around 65%.

3) Expenditures on transportation service, furnishing and supplies, and
miscellaneous goods formed the third group, shares of overseas
carbon footprint of which increased from approximately 30% to
40% before 2009, and increased to a share of around 40%-55%
mainly due to increase in demand after 2009.

4) Vehicle purchase and food at home had about 20% to 25% of their
carbon footprint from overseas.

5) Health, public transportation, shelter, and other services had
10-15% of their carbon footprint from overseas.

6) The shares of overseas carbon footprint for entertainment and utility
expenditures were the smallest, ranging from about 5% to 10%.

Fig. 6 shows that the variations of household carbon footprint from
1995 to 2014 were largely driven by the changes of expenditures on
housing and transportation. The annual changes allows us to This is
true for both domestic and overseas carbon footprint. Expenditures on
housing contributed significantly to household carbon footprint given
its large share in the total household expenditure, while transportation
contributed significantly due to direct GHG emissions from itself. For
overseas carbon footprint, expenditures on transportation were the
primary driver, including not only direct GHG emissions from fuel use
but also emissions from the automotive supply chain in producing ve-
hicles and vehicle parts.

Carbon footprint from each type of consumption changed over time
due to the changes in consumption behavior, economic structure, vo-
lume of consumption, and fuel mix in energy production. It is notice-
able that carbon footprint of expenditures on utility, fuels, and public
transportation increased sharply both domestically and overseas (Fig.
Sla). This agrees with the literature that GHG emissions from energy
consumption in the residential sector have a rebound effect (Brannlund
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Fig. 5. Shares of carbon footprint of the U.S. households by consumption categories from 1995 to 2014. Panel a shows the shares of carbon footprint from 16 types of
U.S. household consumption, and panel b shows the shares of overseas carbon footprint in total carbon footprint of the U.S. households for each type of consumption
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Fig. 6. Annual changes in domestic and overseas carbon footprint of the U.S. household consumption from 1995 to 2014.

et al., 2007; Hertwich, 2005; Taiebat et al., 2019; Thomas and Azevedo,
2013). For expenditures on food away from home, electronics, fur-
nishing and supplies, clothing, vehicle purchase, transportation service,
and health, the decreases in domestic carbon footprint are generally
accompanied by increases in overseas carbon footprint.

The carbon intensity of household consumption—carbon footprint
of unitary consumption—had varied significantly by consumption ca-
tegories (Fig. S1b). Overall, carbon intensity for most types of ex-
penditures had decreased from 1995 to 2014. It means that carbon
footprint decreased for the consumption of the same amount of pro-
ducts or services measured in constant price, indicating the overall
improvement of production efficiency and reduction of carbon intensity
in production. Domestic carbon intensity (only accounting for domestic
carbon footprint) decreased faster than overseas carbon intensity, de-
monstrating the faster improvement in the U.S. (Liang et al., 2016) At
the consumption category level, housing and services, such as shelter,
transportation services, health, and education had carbon intensities
much lower than that of energy-related consumption such as utility and
fuels. For example, the carbon intensity of expenditures on health
products and services ranged from 0.15 to 0.40 kgCO.eq/$(2009) do-
mestically and 0.03 to 0.05 kgCO,eq/$(2009) overseas, while the
carbon intensity of consumption on fuels was as high as 5.0-10.0
kgCO,eq/$(2009).

4. Discussion

This study investigates the U.S. household carbon footprint from
1995 to 2014. The average household carbon footprint was between
17.7 tCO5eq/cap and 20.6 tCOzeq/cap, which agrees reasonably with
the previous study of 18.6 tCO,eq/cap in 2007 (Ivanova et al., 2016). A
similar study also indicates that the per capita carbon footprint for the
U.S. household consumption is roughly 20 tCO,eq/cap (Jones and
Kammen, 2011). A spatial analysis of the U.S. household carbon foot-
print indicates that per capita carbon footprint of Metropolitan Statis-
tical Areas (MSAs) ranges from 17.2 to 19.5 tCO,/cap with a weighted
average of 18.6 tCO,/cap (Jones and Kammen, 2014). Our study also
shows that overseas carbon footprint is approximately 20% of the total
carbon footprint, which corresponds with the results in (Kanemoto
et al., 2016), but is less than the results from (Weber and Matthews,
2008a). This difference is likely because, while both our study and
(Kanemoto et al., 2016) cover most countries in the world, (Weber and
Matthews, 2008a) only examined carbon footprint from the U.S. trades
with seven other countries. The food carbon footprints in a U.S.
household averaged around 7.8 tCO,eq/hh and 3.1 tCOzeq/cap in

2009, which conforms to food impact assessment from (Weber and
Matthews, 2008b) which is 8.1 tCO5/hh in 1997 and from (Mohareb
et al., 2018) which is 3.8 tCOzeq/cap in 2010. (Weber and Matthews,
2008b) used an IO-LCA method and (Mohareb et al., 2018) used a
process-based LCA quantification. This implies that our method of
bridging input-output data and consumer expenditure survey data
could capture the life-cycle emissions thus potentially serve as an im-
proved method to provide more details about emissions associated with
household consumption.

Trade policies can significantly reshape the GHG implications of
household consumption in a globalized market. We observed reduction
of carbon intensities for most of the household consumption categories
in the U.S. from 1995 to 2009. However, the overseas carbon intensity
does not decrease as fast as that in the U.S., even increases for some
categories such as furnishing and supplies and fuels. Global climate
mitigation requires the reduction of carbon intensity for all countries;
otherwise the domestic effort in one country will be diminished by
importing carbon-intensive products and services from other countries.
Consumers should also be aware of carbon footprints of their con-
sumption and make informed purchase decisions. Specifically, weal-
thier consumers should take more climate responsibilities given larger
carbon footprint of their consumption.

Our analysis also shows that long-term sustainable development
relies on the energy system transition away from fossil fuels. About half
of the carbon footprint of the U.S. household consumption comes from
utilities and fuels. A significant portion of GHG emissions from up-
stream supply chain of household consumption are from electricity
generation. To reduce carbon footprint of consumption without sig-
nificant welfare sacrifice (i.e., no reduction of consumption volumes),
replacing fossil fuels with renewable energy in power and transporta-
tion sectors is the ultimate solution.

Limitations exist in our study. We build a concordance matrix to
address the challenge of different classification schemes as described in
Methods and Data. Prices are also adjusted to be constant and com-
parable in different years. We also include direct GHG emissions from
household consumption such as fuel use. However, this study covers the
period from 1995 to 2014, due to the lack of more recent EE-MRIO data
in WIOD. Other available EE-MRIO databases include GTAP, EXIOB-
ASE, and Eora (Athanassiadis et al., 2018). While each offers global
trade flows with environmental accounts, we choose to use WIOD be-
cause its sector classification scheme is the closest to that of the U.S.
CES data. Despite EXIOBASE and Eora provide finer classification of
sectors and more recent data, their sector classification schemes
(COICOP for EXIOBASE and mixed classification for the full Eora
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database) can introduce additional uncertainties when bridging to the
U.S. CES data. 1). Admittedly, the up-to-date U.S. Input-Output data
can provide information about the current carbon footprints of house-
holds in the U.S. However, understanding the carbon footprints of U.S.
households around the world requires the Multi-regional Input-Output
data. The environmental account of WIOD is updated to 2009, which
provides the latest detailed information to quantify the U.S. carbon
footprints around the world. It is limited by the update of MRIO data-
bases and their sector details for concordance purpose; on the other, the
household expenditure patterns did not change significantly within
several years. Our analysis based on 20-year historical data quantifies
either subtle or dramatic changes in household consumption patterns
and associated GHG emissions. Such quantification could offer insights
to the lifestyle changes, which plays an essential role in demand-side
emission management, and shed lights on the emission reduction po-
tentials for further climate actions that both decisionmakers and in-
dividuals can take.

In addition to inherent uncertainties associated with the EE-MRIO
methodology and underlying data (Athanassiadis et al., 2018), addi-
tional uncertainties come from CES survey reports and the reconcilia-
tion of CES data. For example, the over-report of food and under-report
of alcohol and other less frequently-used goods are well-documented in
previous studies (Ivanova et al., 2016; Weber and Matthews, 2008a).

5. Conclusions

This paper analyzed GHG emissions from U.S. household con-
sumption from the angles of scale, distribution and variation. Our 20-
year coverage analysis from 1995 to 2014 found that the annual U.S.
household footprint averaged between 17.7 tCOseq/cap (in 1998) and
20.6 tCO5eq/cap (in 2009), in which housing and transportation are the
two major contributors. The household footprint has increasingly ex-
tended globally, especially for manufacturing products such as clothing
and electronic and machinery products, half of whose emissions oc-
curred overseas. Among the countries, China and Canada are the top
two countries that U.S. households outsource emissions from. Within
the country, carbon inequity still exists in that per capita carbon foot-
print generally increases with household income, ranging from 12.1 to
28.6 tCOyeq/cap. This study highlighted the household consumption
that contributes most to the total GHG emissions and has most spill-
over effects overseas. Given these facts, effective climate mitigation
policies should target emission-intensive expenditure and high emission
consumer groups. Further attention should be paid to the lifestyle shifts
from the demand-side.

Declaration of competing interest
The authors state no conflict of interest.
Acknowledgments

The work was partially supported by the Lieberthal-Rogel Center for
Chinese Studies at University of Michigan.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2019.105137.

References

Athanassiadis, A., Christis, M., Bouillard, P., Vercalsteren, A., Crawford, R.H., Khan, A.Z.,
2018. Comparing a territorial-based and a consumption-based approach to assess the
local and global environmental performance of cities. J. Clean. Prod. 173, 112-123.
https://doi.org/10.1016/j.jclepro.2016.10.068.

Bin, S., Dowlatabadi, H., 2005. Consumer lifestyle approach to US energy use and the
related CO2 emissions. Energy Policy 33, 197-208. https://doi.org/10.1016/50301-

Environment International 133 (2019) 105137

4215(03)00210-6.

Brannlund, R., Ghalwash, T., Nordstrém, J., 2007. Increased energy efficiency and the
rebound effect: effects on consumption and emissions. Energy Econ. 29, 1-17.
https://doi.org/10.1016/j.eneco.2005.09.003.

Brizga, J., Feng, K., Hubacek, K., 2017. Household carbon footprints in the Baltic States: a
global multi-regional input-output analysis from 1995 to 2011. Appl. Energy 189,
780-788. https://doi.org/10.1016/j.apenergy.2016.01.102.

Davis, S.J., Caldeira, K., 2010. Consumption-based accounting of CO2 emissions. Proc.
Natl. Acad. Sci. 107, 5687-5692. https://doi.org/10.1073/pnas.0906974107.

Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M., de Vries, G., 2013. The construction of
world input-output tables in the WIOD project. Econ. Syst. Res. 25, 71-98. https://
doi.org/10.1080/09535314.2012.761180.

Druckman, A., Jackson, T., 2009. The carbon footprint of UK households 1990-2004: a
socio-economically disaggregated, quasi-multi-regional input-output model. Ecol.
Econ. 68, 2066-2077. https://doi.org/10.1016/j.ecolecon.2009.01.013.

Feng, K., Davis, S.J., Sun, L., Li, X., Guan, D., Liu, W., Liu, Z., Hubacek, K., 2013.
Outsourcing CO2 within China. Proc. Natl. Acad. Sci. 110, 11654-11659. https://doi.
org/10.1073/pnas.1219918110.

Feng, K., Davis, S.J., Sun, L., Hubacek, K., 2015. Drivers of the US CO2 emissions
1997-2013. Nat. Commun. 6, 7714. https://doi.org/10.1038/ncomms8714.

Ferndndez-Villaverde, J., Krueger, D., 2007. Consumption over the life cycle: facts from
consumer expenditure survey data. Rev. Econ. Stat. 89, 552-565. https://doi.org/10.
1162/rest.89.3.552.

Guan, D., Peters, G.P., Weber, C.L., Hubacek, K., 2009. Journey to world top emitter: an
analysis of the driving forces of China's recent CO 2 emissions surge. Geophys. Res.
Lett. 36, L04709. https://doi.org/10.1029/2008GL036540.

Hertwich, E.G., 2005. Consumption and the rebound effect: an industrial ecology per-
spective. J. Ind. Ecol. 9, 85-98.

Hertwich, E.G., Peters, G.P., 2009. Carbon footprint of nations: a global, trade-linked
analysis. Environ. Sci. Technol. 43, 6414-6420. https://doi.org/10.1021/es803496a.

Intergovernmental Panel on Climate Change, 2014. In: Team, Core Writing, Pachauri,
R.K., Meyer, L.A. (Eds.), Climate Change 2014: Synthesis Report. Contribution of
Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. IPCC, Geneva, Switzerland (151 pp).

Ivanova, D., Stadler, K., Steen-Olsen, K., Wood, R., Vita, G., Tukker, A., Hertwich, E.G.,
2016. Environmental impact assessment of household consumption. J. Ind. Ecol. 20,
526-536. https://doi.org/10.1111/jiec.12371.

Ivanova, D., Vita, G., Steen-Olsen, K., Stadler, K., Melo, P.C., Wood, R., Hertwich, E.G.,
2017. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 12, 054013.
https://doi.org/10.1088/1748-9326/aa6da9.

Jacquet, J., Jamieson, D., 2016. Soft but significant power in the Paris agreement. Nat.
Clim. Chang. 6, 643-646. https://doi.org/10.1038/nclimate3006.

Jones, C.M., Kammen, D.M., 2011. Quantifying carbon footprint reduction opportunities
for U.S. households and communities. Environ. Sci. Technol. 45, 4088-4095. https://
doi.org/10.1021/es102221h.

Jones, C., Kammen, D.M., 2014. Spatial distribution of U.S. household carbon footprints
reveals suburbanization undermines greenhouse gas benefits of urban population
density. Environ. Sci. Technol. 48, 895-902. https://doi.org/10.1021/es4034364.

Kanemoto, K., Moran, D., Hertwich, E.G., 2016. Mapping the carbon footprint of nations.
Environ. Sci. Technol. 50, 10512-10517. https://doi.org/10.1021/acs.est.6b03227.

Kitzes, J., 2013. An introduction to environmentally-extended input-output analysis.
Resources 2, 489-503. https://doi.org/10.3390/resources2040489.

Lan, J., Malik, A., Lenzen, M., McBain, D., Kanemoto, K., 2016. A structural decom-
position analysis of global energy footprints. Appl. Energy 163, 436-451. https://doi.
org/10.1016/j.apenergy.2015.10.178.

Leontief, W., 1986. Input-Output Economic. Oxford University Press.

Liang, S., Wang, H., Qu, S., Feng, T., Guan, D., Fang, H., Xu, M., 2016. Socioeconomic
drivers of greenhouse gas emissions in the United States. Environ. Sci. Technol. 50,
7535-7545. https://doi.org/10.1021/acs.est.6b00872.

Malik, A., Lan, J., Lenzen, M., 2016. Trends in global greenhouse gas emissions from 1990
to 2010. Environ. Sci. Technol. 50, 4722-4730. https://doi.org/10.1021/acs.est.
5b06162.

Miller, R.E., Blair, P.D., 2009. Input-Output Analysis: Foundations and Extensions.
Cambridge Uni.

Mohareb, E.A., Heller, M.C., Guthrie, P.M., 2018. Cities' role in mitigating United States
food system greenhouse gas emissions. Environ. Sci. Technol. 52, 5545-5554.
https://doi.org/10.1021/acs.est.7b02600.

NAICS and ISIC - Now and the future. Fourth meeting of the expert group on international
economic and social classifications, n.d. . https://unstats.un.org/unsd/class/
intercop/expertgroup/1998/AC63-10.PDF.

Peters, G.P., Hertwich, E.G., 2008. CO2 embodied in international trade with implications
for global climate policy. Environ. Sci. Technol. 42, 1401-1407. https://doi.org/10.
1021/es072023k.

Steen-Olsen, K., Wood, R., Hertwich, E.G., 2016. The carbon footprint of Norwegian
household consumption 1999-2012. J. Ind. Ecol. 20, 582-592. https://doi.org/10.
1111/jiec.12405.

Taiebat, M., Stolper, S., Xu, M., 2019. Forecasting the impact of connected and automated
vehicles on energy use: a microeconomic study of induced travel and energy rebound.
Appl. Energy 247, 297-308. https://doi.org/10.1016/j.apenergy.2019.03.174.

Thomas, B.A., Azevedo, I.L., 2013. Estimating direct and indirect rebound effects for U.S.
households with input-output analysis part 1: theoretical framework. Ecol. Econ. 86,
199-210. https://doi.org/10.1016/j.ecolecon.2012.12.003.

Timmer, M.P., Los, B., Stehrer, R., de Vries, G.J., 2016. An Anatomy of the Global Trade
Slowdown Based on the WIOD 2016 Release. GGDC Research Memorandum Number
162.

U.S. Census Bureau, 2018a. Annual wholesale trade survey (AWTS). https://www.census.


https://doi.org/10.1016/j.envint.2019.105137
https://doi.org/10.1016/j.envint.2019.105137
https://doi.org/10.1016/j.jclepro.2016.10.068
https://doi.org/10.1016/S0301-4215(03)00210-6
https://doi.org/10.1016/S0301-4215(03)00210-6
https://doi.org/10.1016/j.eneco.2005.09.003
https://doi.org/10.1016/j.apenergy.2016.01.102
https://doi.org/10.1073/pnas.0906974107
https://doi.org/10.1080/09535314.2012.761180
https://doi.org/10.1080/09535314.2012.761180
https://doi.org/10.1016/j.ecolecon.2009.01.013
https://doi.org/10.1073/pnas.1219918110
https://doi.org/10.1073/pnas.1219918110
https://doi.org/10.1038/ncomms8714
https://doi.org/10.1162/rest.89.3.552
https://doi.org/10.1162/rest.89.3.552
https://doi.org/10.1029/2008GL036540
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0060
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0060
https://doi.org/10.1021/es803496a
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0070
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0070
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0070
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0070
https://doi.org/10.1111/jiec.12371
https://doi.org/10.1088/1748-9326/aa6da9
https://doi.org/10.1038/nclimate3006
https://doi.org/10.1021/es102221h
https://doi.org/10.1021/es102221h
https://doi.org/10.1021/es4034364
https://doi.org/10.1021/acs.est.6b03227
https://doi.org/10.3390/resources2040489
https://doi.org/10.1016/j.apenergy.2015.10.178
https://doi.org/10.1016/j.apenergy.2015.10.178
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0115
https://doi.org/10.1021/acs.est.6b00872
https://doi.org/10.1021/acs.est.5b06162
https://doi.org/10.1021/acs.est.5b06162
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0130
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0130
https://doi.org/10.1021/acs.est.7b02600
https://unstats.un.org/unsd/class/intercop/expertgroup/1998/AC63-10.PDF
https://unstats.un.org/unsd/class/intercop/expertgroup/1998/AC63-10.PDF
https://doi.org/10.1021/es072023k
https://doi.org/10.1021/es072023k
https://doi.org/10.1111/jiec.12405
https://doi.org/10.1111/jiec.12405
https://doi.org/10.1016/j.apenergy.2019.03.174
https://doi.org/10.1016/j.ecolecon.2012.12.003
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0160
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0160
http://refhub.elsevier.com/S0160-4120(19)31575-2/rf0160
https://www.census.gov/wholesale/index.html

K. Song, et al.

gov/wholesale/index.html.

U.S. Census Bureau, 2018b. Annual retail trade survey (ARTS): 2016. https://www.
census.gov/programs-surveys/arts.html.

U.S. Census Bureau, 2019. North American industry classification system concordance.
https://www.census.gov/eos/www/naics/concordances/concordances.html,
Accessed date: 22 July 2019.

U.S. Department of Energy, 2016. Average historical annual gasoline pump Price, 1929-
2015. https://www.energy.gov/eere/vehicles/fact-915-march-7-2016-average-
historical-annual-gasoline-pump-price-1929-2015.

U.S. Energy Information Administration, 2019. U.S. Price of natural gas delivered to re-
sidential consumers. https://www.eia.gov/dnav/ng/hist/n3010us3a.htm.

U.S. Environmental Protection Agency, 2018. Greenhouse gases equivalencies calculator -
calculations and references. https://www.epa.gov/energy/greenhouse-gases-
equivalencies-calculator-calculations-and-references.

Weber, C.L., Matthews, H.S., 2008a. Quantifying the global and distributional aspects of

Environment International 133 (2019) 105137

American household carbon footprint. Ecol. Econ. 66, 379-391. https://doi.org/10.
1016/j.ecolecon.2007.09.021.

Weber, C.L., Matthews, H.S., 2008b. Food-miles and the relative climate impacts of food
choices in the United States. Environ. Sci. Technol. 42, 3508-3513. https://doi.org/
10.1021/es702969f.

Wiedenhofer, D., Guan, D., Liu, Z., Meng, J., Zhang, N., Wei, Y.-M., 2017. Unequal
household carbon footprints in China. Nat. Clim. Chang. 7, 75-80. https://doi.org/
10.1038/nclimate3165.

Wiedmann, T., 2009. A review of recent multi-region input-output models used for
consumption-based emission and resource accounting. Ecol. Econ. 69, 211-222.
https://doi.org/10.1016/j.ecolecon.2009.08.026.

Xu, M., Allenby, B.R., Crittenden, J.C., 2011. Interconnectedness and resilience of the U.S.
economy. Adv. Complex Syst. 14, 649-672. https://doi.org/10.1142/
S0219525911003335.


https://www.census.gov/wholesale/index.html
https://www.census.gov/programs-surveys/arts.html
https://www.census.gov/programs-surveys/arts.html
https://www.census.gov/eos/www/naics/concordances/concordances.html
https://www.energy.gov/eere/vehicles/fact-915-march-7-2016-average-historical-annual-gasoline-pump-price-1929-2015
https://www.energy.gov/eere/vehicles/fact-915-march-7-2016-average-historical-annual-gasoline-pump-price-1929-2015
https://www.eia.gov/dnav/ng/hist/n3010us3a.htm
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://doi.org/10.1016/j.ecolecon.2007.09.021
https://doi.org/10.1016/j.ecolecon.2007.09.021
https://doi.org/10.1021/es702969f
https://doi.org/10.1021/es702969f
https://doi.org/10.1038/nclimate3165
https://doi.org/10.1038/nclimate3165
https://doi.org/10.1016/j.ecolecon.2009.08.026
https://doi.org/10.1142/S0219525911003335
https://doi.org/10.1142/S0219525911003335

	Scale, distribution and variations of global greenhouse gas emissions driven by U.S. households
	Introduction
	Methods and data
	Multi-regional input-output (MRIO) model
	Environmentally extended MRIO (EE-MRIO) model
	Direct use of energy
	Household consumption
	Types of consumption
	Income groups


	Results
	U.S. household carbon footprint in 2009
	U.S. household carbon footprint from 1995 to 2014

	Discussion
	Conclusions
	mk:H1_14
	Acknowledgments
	mk:H1_17
	Supplementary data
	References




