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ABSTRACT
Automated Fault Detection and Diagnosis (FDD) systems depend entirely on the reliability of sensor read-
ings. This paper fills an important gap in the literature by pinpointing the distinction between sensor faults
and system faults in the monitoring process. The proposed methodology determines the minimum degree
of sensor redundancy necessary to achieve this. A priori knowledge of physical relationships between mon-
itored variables is used to check the credibility of sensor observations. The generalization reveals that for
serially connected systems if the number of sensors is greater than 1.5 times of the number of monitored
variables, the task of distinguishing between sensor and system faults can be accomplished with certainty,
as long as serial causality is valid between the monitored variables. This is verified using a system of
interconnected multi reservoirs and control valves.
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DISTINCTION DES DÉFAILLANCES DU CAPTEUR EN RAPPORT AUX DÉFAILLANCES
DUES AU SYSTÈME PAR L’UTILISATION DE LA REDONDANCE MINIMALE DU CAPTEUR

RÉSUMÉ
Le moteur de détection et de diagnostic de défaillance (FDD) dépend entièrement sur la fiabilité des relevés
du capteur. La présente recherche vient combler un vide important dans la littérature en exposant le pro-
blème de distinction entre les défaillances dues au système comme tel dans les procédés de contrôle. La
méthodologie proposée détermine le degré minimal de redondance du capteur nécessaire pour faire cette
distinction. On utilise la connaissance à priori des relations physiques entre les variables surveillées pour
vérifier la fiabilité des observations du capteur. En général, on constate que pour les systèmes connectés en
série, la tâche de distinguer entre les défaillances du capteur et celles du système peut être réalisée avec
certitude aussi longtemps que le lien de causalité sérielle est valide entre les variables surveillées. Ceci est
validé en ayant recours à un système interconnecté de multi réservoirs et des soupapes de contrôle.

Mots-clés : défaillance du capteur; défaillance du système; redondance du capteur; localisation de la
défaillance; diagnostic de défaillance; fiabilité.
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1. INTRODUCTION

Fault detection and diagnosis (FDD) is a key element of operation and management of automated systems
to increase reliability and safety. There is a high demand for the development of diagnostic systems that
are capable of autonomous detection of the presence of anomaly as well as localization of the faults that
may occur in different components of a complex dynamic system while in operation. Most of the existing
FDD approaches can be divided into computational intelligence-based and model-based methods [1, 2]. The
former approach employs quantitative historical data or qualitative information on the system. While in the
latter, the mathematical model of the system is being utilized as an a priori source of information on the
monitored system. In the area of automatic control, the most powerful, reliable and accurate diagnostic
approaches are model-based schemes.

A fault in a model-based scheme is defined as the deviation of measurement from the model output.
An unanticipated inconsistency in a sensor’s readings from its expected values under specific operating
conditions may not necessarily be a fault in the sensor mechanism itself, but it can be a symptom of a more
serious potential fault in the monitored system. Hence, system and sensor faults might be manifested with
the same symptoms. Present FDD schemes only consider either the malfunction of the system, assuming
that the sensing system is functioning normally, or sensor failure while the system is fault-free. The ability
to identify the source of faults is crucial in the monitoring of a system, as different corrective actions or
compensatory responses are required in case of sensor or system faults, attributed to the diagnostic decision.
There is an abundance of literature on fault detection and diagnosis for both sensor and system individually.
Despite the importance of the practical application of diagnostic schemes, distinguishing between sensor and
system faults does not appear to have received a substantial prior attention in the monitoring and diagnosis
literature.

1.1. Sensor Fault vs. System Fault
When a sensor produces an output measurement signal proportional to the physical input stimulus, within
an acceptable amount of deviation as dictated by the sensor physics, resolution, accuracy, application re-
quirements, etc., it is considered ‘healthy’. This deviation is called ‘noise’. However, the effects of faults
are manifested as undesirable deviations in the sensor output such as drift, bias, loss of effectiveness, and
hard failure. Such phenomena may occur intermittently or steadily over a period indicating the development
of gradual sensor degradation. In the extreme case, there may be a complete loss of information from a
sensor due to an abrupt failure of the sensing element or power/signal transmission lines, connectors, and
faults in the onboard signal processing circuits [3]. In the cases where the readings are used for feedback
control purposes, it may lead to undesirable system behavior if the sensor measurement readings become
faulty, unavailable or invalid. Hence, we can conclude that the presence of faults in sensors may result in
inefficient and/or inaccurate control.

The system faults are usually represented as cases where some condition changes in the system, which
make the nominal dynamic equation of the system invalid. System faults are dependent on the sub-systems
and actuators being monitored. Some examples include but not limited to lock-in-place or freezing, float,
hard-over-failure and loss of effectiveness in electromechanical or electromagnetic actuators such as valves,
gearbox, and robotic arms [4]; leakage in a tank in chemical systems; accumulation of debris and clogging
in hydraulic cylinders [5]; bearing faults in rotational equipment such as engines [6], etc. System faults may
have minor to extremely severe consequences. For example, an unexpected failure of the aircraft engine
components may cause significant economic as well as fatal losses [7]. Thus, it is extremely crucial to di-
agnose these faults at early stages of component degradation in order to avoid catastrophic consequences.
Mathematical representation or modeling of these faults is sometimes very arduous, and extensive experi-
mentation may be needed before constructing a model. In general, system faults can be represented by a
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Fig. 1. Schematic view of the potential sensor/system faults in a multi-reservoir process.

change in the system’s state equation [1]. Without any knowledge of the system status, in some cases, the
discrepancy of sensor readings from the system model may erroneously be interpreted as potential faults in
the monitoring sensors.

1.2. Example of Interconnected Multi Reservoirs System
Throughout this paper, the multi reservoirs process (commonly known as Continuous Stirred Tank Reactors
(CSTR) in chemical industries) is exemplified to explain the definitions and later, in order to show the
effectiveness of the proposed diagnostic method and sensor placement algorithm for the distinction of sensor
and system faults. This is a well-known example in the area of control engineering [8]. The liquid heights
in each reservoir are described as controllable outputs, which are regulated by control valves, equipped with
electrical actuators. It is assumed that the valves resistances are set in a way that the height of liquid in
each reservoir is proportional to the required flow rate [9]. The system consists of a series of reservoir
(tanks), control valves and liquid level sensors. It is noted that no other variable is monitored in this system.
Reservoirs can have different architectures in their connections. However, the type of connection makes
no difference in causality modeling. The detailed dynamics of the process is derived in [10], and only
relationships between heights are important here.

1.2.1. Potential faults in the operation
As schematically shown in Fig. 1, the system fault and sensor fault, which may occur during the operation
of the process include:

• Valve fault: A fault in the valve (such as leakage) results in a change in the input flow rate of the
descendent tank without a corresponding adjustment in the control signal.

• Sensor fault: A fault in the liquid level sensor introduces a deviation into the measurement. For
example, a bias in sensor reading causes the actual flow rate to be maintained at a level below the set
point.

2. PROBLEM STATEMENT

System fault detection based on sensor observations and measurements is valid only when it is guaranteed
that all sensors are working properly and are fault-free. A system fault should be detected and isolated
immediately. On the other hand, sensor faults, which lead to incorrect measurements, can be detected and
diagnosed, assuming that anomaly and inconsistency are not from the system. Both the system faults and
the sensor faults may have similar symptoms in sensor observations or mask each other in the worst case.
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The consequence of similar symptom or masking in these two faults leads to an inability to differentiate
between them. The essence of this distinction is due to the fact that either has a different corrective action
or compensatory response:

• In the case of sensor faults, the sensors can be replaced physically; redundant sensors can be deployed,
or the measurement can be mathematically compensated temporarily. As an instance, a faulty reading
of air speed in an aircraft can be counterweighted by flight crew until the end of the flight.

• System faults on the other hand, often require immediate attention, which might range from a simple
diagnostic alarm to notify the operator, to severe cases, where full shut down of the operation is
inevitable, as soon as it becomes safely possible. For example, a leakage in an aircraft engine, need
immediate action, such as emergency landing before it leads to fatal consequences.

2.1. Literature Review
The idea of using banks of dedicated observers is frequently used for detecting individual predefined faults;
each one is assigned to be sensitive to a certain fault while remaining invariant to other predefined faults
[2]. This scheme brings isolability for different faults from each other. However, a differentiation between
system and sensor faults cannot be achieved, since the design does not consider the two types of faults in a
unified framework [11]. The residuals are still computed using the measurements from the sensors, and a
faulty measurement leads to breaching the threshold in either case. Hayes et al. in 2008 [12], Hajiyev et al.
in 2000 [13], and Xue et al. in 2007 [14] used fault specific threshold selection to achieve isolation for some
known sensor/actuator faults by robust Kalman filtering and statistical analysis of innovation sequence.

Krysander et al. in 2005 [15] and 2008 [16] and Rosich in 2012 [17] proposed the sensor placement
algorithm for detectability and isolability of different known faults based on structural models. Bhushan
and Rengaswamy addressed the problem of sensor location assignment for optimal fault observability based
on graph theoretic approaches [18]. It is noted that many researchers have also investigated the concept of
distinguishing between disturbances and faults using hardware redundancy in the chemical process [19].

Distinguishing between sensor and system faults does not appear to have received a substantial amount
of prior attention. The existence of this issue has been acknowledged in a large number of publications
[20]. However, only a few has tried to tackle this problem. Xu and Feng [21] looked explicitly into this
problem via data-driven and statistical methods. They investigated a hydraulic tank and pressure line with
Principal Component Analysis (PCA) and concluded that these faults are indistinguishable without employ-
ing hardware redundancy. Krishnamoorthy [22] has also introduced a framework based on Bayesian Belief
Networks to detect and isolate multiple faults. The foundation of this method is a probabilistic inference,
which allows for incorporating and propagating uncertainties. The shortcoming of this approach is that be-
lief updating takes place upon knowing where the fault (discrepancy) is injected. It has also been reported
that the method has no efficacy on all edge nodes.

Having this in mind, to the best of the authors’ knowledge and literature surveyed, presently there appears
to be no way of knowing which of these faults causes the triggering of the diagnostic alarm, using the current
fault diagnosis schemes.

2.2. Necessity of Redundant Information
Through the course of this research, a number of approaches such as observers and filters, Bayesian Belief
Networks and Neural Networks on different applications such as wood drying kiln and hydraulic systems
have been implemented and examined. None of these methods showed a promising solution for the distinc-
tion between sensor and system faults since this issue is one step ahead of conventional FDD and requires
redundant and a priori knowledge of the system and its components. Basically, making a decision regarding
this issue has an analogy with solving one equation with two unknowns.
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Table 1. Modeling a two-tank process with causal network and its analogy.
Causal Network Model Equivalent in Multi Reservoirs System
Node A Liquid level in tank 1 (H1)
Node B Liquid level in tank 2 (H2)
Link A→ B Valve (v1)

Some qualitative database of knowledge rules can narrow down this problem; however, it can be realized
in the extreme cases. For instance, in a wood drying kiln, when the controller set point is on 70◦C, if a sensor
indicates a reading of� 70◦C or very low temperatures (lower than the outside temperature), it would be a
strong indication of sensor fault rather than a fault in the actuators (heaters) of the system. However, these
rules are highly application dependent and require expert’s knowledge. These rules are only valid in the
extreme cases and not conclusive during most of the operation cycle of the kiln.

3. UTILIZING SENSOR REDUNDANCY

Before explaining the proposed methodology, some definitions are described for modeling purposes.

3.1. Causal Networks
A causal network is a graphical and intuitive model presentation based on physical principles, which can
assist users to realize the model. The use of causal networks is common in the modeling of real system as
well as fault diagnosis and fault propagation [23, 24]. In this study, the causal networks are used to illustrate
the monitored variables and their physical relations. In essence, a causal network represents the underlying
first principle relationships between the different variables that represent the monitored parameters in the
system. The graphical framework of causal networks provides an intuitive understanding of the system
variables being modeled. A causal network is shown as a graphical structure that consists of a set of nodes
that represent the variables related to the physical domain of interest. These nodes are connected by a set of
directed links, which explicitly represent the dependencies between the variables. The lack of a link between
two nodes represents their independence. The structure is referred to as a Directed Acyclic Graph (DAG)
[24]. If a node A and a node B are connected by a directed link as A→ B, then B is said to be dependent on
A.

3.1.1. Representation of sensor and system on causal network
A and B correspond to some physical variables and measurables, using appropriate sensors. The link A→ B
between the two nodes denotes that they are causally related i.e. B = f (A) and thus represents the ‘system
AB’. To make this point clear, we may refer to the connected reservoirs. The analogy of components of this
process to a two-node causal network is given in Table 1.

3.1.2. Serially connected causal network
In the case of a serially connected causal network, there is only one path between any two nodes in the
network as shown in Fig. 2. Only this architecture illustrated in is useful for modeling of the system in the
proposed methodology. Alternatively, other types of causal networks (multiply connected and tree network)
can be truncated to several serially connected causal networks. This point is further discussed in Section 3.7.

Among all variables of a system, a certain subset is required to be monitored to make the system de-
tectable. This subset is the minimum number of variables, which makes it possible to isolate the system
faults from each other. The necessary (but not sufficient) condition is that the system should be observable.
The criteria for detectability of the system and isolability of faults from each other are addressed in [15, 16].
Once the minimum subset of variables is defined, which clearly must be observable, each of the variables
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Fig. 2. A serially connected causal network, for modeling a multivariable system.

Fig. 3. A set of variables in the system equipped with a single sensor for monitoring.

should be equipped with a proper sensor in the design phase for the purpose of monitoring. In Fig. 3, the
sensors are shown as boxes corresponding to each variable.

Many papers discuss the issue of sensor placement for fault detection and isolation [15–17]. This is the
necessary configuration (but not sufficient) to detect and isolate faults. However, relying only on the detected
fault after the detection procedure, no decision can be made at this point regarding the origin of the fault, i.e.
system or the sensor itself. Since monitoring this subset is the necessary condition for detection of faults,
the lesser number of sensors will result in an inability to detect and isolate faults. The magnitudes of faults
and handling the uncertainties, e.g. noise and unmodeled parameters have a substantial role in correctly
detecting the faults. Since the purpose of this research is crisp distinguishing of sensor and system faults,
the issue of uncertainty is not considered for explaining the methodology.

3.2. Duplication of Sensors
Based on the definition of fault, the aforementioned configuration of sensors will provide the grounds for
detecting faults with model-based detection techniques (either sensor or system). However, no firm decision
is conclusive on the origin of the detected fault with a single sensor on each variable. Some studies suggested
following statements regarding the isolability of sensor faults [16, 17].

• A fault of a sensor placed to solve the detectability problem is only detectable.

• A fault of two sensors placed to aid the detectability problem is always isolable between them.

These statements implicitly describe the criteria for distinguishability of sensor faults from system faults. In
our methodology, the following assumption is made: The probability of the occurrence simultaneous faults
in the redundant sensors is statistically close to zero.

While the probability of individual faults in each sensor is not zero, this point is statistically true, since
the essential and redundant sensors are installed in parallel, which makes the probability of concurrent faults
next to zero. Assuming this, in the presence of a redundant sensor S2

i for the essential sensor S1
i , a sensor

fault in either S1
i or S2

i is isolable between them. Notation S j
i corresponds to the sensor of ith variable and

superscript j denotes the number of sensor installed on the variable.
While both sensors S1

i and S2
i monitor one variable, if the readings at a particular instant have discrepancy

(i.e. larger than the defined threshold for consideration of measurement noise), it is a strong indication of
a fault in either sensor. Since handling uncertainty is discussed later, for convenience, we consider that in
fault-free condition, the readings from both sensors are equal.
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In a model based fault diagnosis environment, if the sensors are duplicated, any fault can be isolated,
and the origin can be identified (localized) from the discrepancy of sensor readings. Typically, one sensor
indicates the model output and the other deviates. On the other hand, a system fault leads to deviation of
both sensors and the deviation from the model results in successful detection of the fault. The significance
of reading for both sensors S1

i and S2
i is exactly the same; therefore, there is no privilege between them even

if they are of different type.

3.3. Difficulties Associated with Sensor Redundancy
There are several downsides related to sensor redundancy. These factors include but are not limited to
additional costs; weight, space, electrical/power and installation constraints; increased complexity; and fi-
nally, the sophistication associated with redundant data from measurements. Given these limitations with
redundant sensors, there is a reluctance to add sensors in order to fully satisfy the duplicated configura-
tion subset. Therefore, in order to successfully perform the task of sensor/system fault differentiation, we
should minimize the sensor set, while producing enough redundant analytical substitutions using functional
relationships to either confirm or reject the measurement data from existing sensors.

Henceforward, the problem of distinguishing sensor and system faults will be addressed as ‘what de-
gree of redundancy is sufficient to perform a crisp decision on the differentiation of the aforementioned
faults?’

3.4. Mitigation of Sensor Redundancy
Strict duplication of sensors will result in crisp distinguishability of sensor and system faults. The diagnos-
tic methodology described in this section is based on minimizing the sensor redundancy and knowledge
utilization, without compromising the distinguishability and diagnosability of the system. Hence, by using
physical relationships between the monitored variables, we can reduce the degree of redundancy from strict
duplications. Functional relationships represent the physical interactions between the variables, which are
described in a mathematical form. It basically models the first principle relationships between variables, e.g.
mass balance. The form of mathematical equation can vary from linear to highly nonlinear, temporal, etc.,
as long as there is a closed form solution between the two variables. Given the form of the causal model,
these functional relationships can generate analytical values to check the credibility of sensor readings in
neighboring nodes.

Definition 1. We call the values generated by functional relationships using the readings from the sensors
Analytical Computational Substitutions (ACS). Generation of ACS could be computationally expensive,
depending on the form of the functional relationships; however, they should be calculated in real-time at
each evaluation instant of the monitoring procedure.

Definition 2. Logic set consists of all system/sensor state possibilities, which are called System Behavioral
Modes. It is designed offline with a set of knowledge-based rules (e.g., IF symptom AND symptom THEN
conclusion). The parametric design of the logic set allows on-line decision-making by comparing the
generated ACS and sensor readings at the sampling point. Now we use the definition of ACS and logic set
to eliminate a number of redundant sensors from the fully duplicated configuration. Removing a duplicated
sensor from a particular variable is effective, only if neighboring nodes can generate the values of it, i.e.
ACS. Hence, a sufficient subset must at least contain three nodes.

Definition 3. We define a window, which covers three nodes at a time, as it traverses through the nodes of
the system as shown in Fig. 4. This window is referred to as Moving Monitoring Window (MMW).
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Fig. 4. MMW considers three variables in a step of monitoring.

Fig. 5. (a) Configuration of optimal minimum redundancy. (b) Variables, sensor readings, and ACS at time ( j).

Given three variables (nodes) in one MMV, there are three permutations of sensor culling available for
mitigation of redundancy. It should be noted that the significance of S1

i and S2
i are the same; therefore remov-

ing either of them will have the same consequence. The effects of culling permutations are fully described
in [10]. Only removing the duplication on middle node (B) is effective, since it is possible to use ACS from
nodes A and C to check the credibility of sensor on B. As shown in Fig. 5(a), by using this configuration,
in each MMW we will have three variables and five sensors, which are placed in a way that middle variable
(node) is bordered by variables (nodes) with duplicated sensors. Indeed, by removing this sensor from full
duplication configuration, we lose some state possibilities of the system, and the lack of these states appear
detrimental to distinguishing procedure for a few of the fault modes. The sensors will provide five mea-
surements from three variables, at each sampling time. On the other hand, functional relationships between
variables yield six ACS corresponding to the variables, as shown by arrows in Fig. 5(b). At any sampling
point, j, two measurements from sensors S1

A and S2
A, (a1( j) and a2( j)) can provide two ACS for variable

B (b̄a1
( j) and b̄a2

( j)). Similarly, S1
C and S2

C provide two ACS for variable B. Measurement of S1
B provides

one ACS for A and one for C using the functional relationships (āb1
( j) and c̄b1

( j), respectively). These six
values and five measurements enter the logic set unit for further processing.

3.4.1. Structure of the logic set unit
This unit contains all possible states and combinations of measurements and values and decides based on
a bank of knowledge-based rules (behavioral modes). In addition to detection of faults and anomalies, this
unit can act as the distinguisher and differentiate between sensor faults and system faults, and generate
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signals for corrective actions or compensatory responses. The parametric structure of the logic set allows
comparing and further processing of sensor measurements and corresponding ACS. Table 2 lists all thirty
state possibilities of behavioral modes and corresponding diagnosis.

3.4.2. Multiple faults
When the number of concurrent faults in an MMW exceeds two or three, practically, the operation of the
system should be halted. As shown in Table 2, some diagnoses are ‘Shut Down’. This means that the
number of faults in either sensor or system is more than the case that we can distinguish the origin of it,
due to the missing information on corresponding state possibilities, which is the consequence of removing
a sensor from full duplication configuration. This is also practically not feasible to have a high number of
faults at the same time unless another underlying issue causes it. In these situations, the system should be
shut down immediately to stop the catastrophic consequences. However, in all other cases, the diagnostic
system is able to handle multiple faults successfully, while maintains the ability to distinguish and locate
sensor and system malfunctions.

3.4.3. Sensor fault-tolerance strategy
This diagnostic methodology is capable of deciding on this issue and utilizing either the sensor reading or
the ‘analytical computational substitution (ACS)’. Subsequently, it has the capacity to tolerate some sensor
faults temporarily; however, the malfunctioning sensor(s) should be fixed or replaced as soon as possible.
For example, in the case that the diagnosis is that S1

B is faulty and all other component are healthy, the
ACS from node A or C can be substituted for monitoring node B. Hence, b̄a1

, b̄a2
, b̄c1

or b̄c2
can cover the

reading of S1
B. However, this substitution is not sustainable and may not be valid after some sampling points;

hence the fault tolerance cannot be guaranteed for large time spans. In this situation, the system works in a
degraded mode.

A fault in either sensors A or C can be tolerated by using the validated measurement from its corresponding
sensor. For example, if S1

A is faulty, the validated reading from S2
A(a

2) is used as the correct measurement
of node A. Since it is for a single fault, we call that sensor fault tolerant of degree one. The system is also
capable of sensor fault tolerance of degree two, which means that two sensor faults can be tolerated. For
instance, a fault in S2

A and a fault in S1
B can be tolerated at the same time with the aforementioned logic.

It should be noted that the probability of concurrent faults in duplicated sensors is zero, hence, S1
A and S2

A
cannot be faulty at the same time.

3.4.4. Structure of proposed diagnostic system
Figure 6 depicts the structure of the proposed diagnostic system with a minimum number of redundant
sensors. To re-iterate, measurements are used to generate ACS. Then measurements and ACS enter the
logic set unit to make a decision on the status of the system, based on the predefined behavioral modes. If
the system is unable to continue operation, it will be shut down. Moreover, if the system is able to operate in
the presence of a fault, the diagnostic system runs the fault isolation procedure, commands the system to op-
erate in a degraded mode and temporarily initiates the sensor fault tolerant strategy. It can be concluded that:

When a variable (node) is bordered with two nodes with duplicated sensors, one sensor is sufficient for the
task of distinguishing sensor fault from system fault, since the ACS generated by neighboring measurements
can provide redundant values in order to check the credibility of reading of the single sensor installed on the
middle node. Removing any more sensors leads to an inability to localize and differentiate between sensor
and system faults, due to the lack of adequate behavioral modes for diagnosis decision-making.

Transactions of the Canadian Society for Mechanical Engineering, Vol. 41, No. 3, 2017 477



Table 2. Logic set.
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Fig. 6. The structure of the proposed diagnostic system.

3.5. Generalization by Deduction
We discussed the concept of MMW, which monitors three variables and then traverses in the direction of
causality to monitor the next proper set. If the system is modeled with only three variables, there is no need to
move the window. However, for the systems with larger number of variables, the redundancy configuration
methodology has two strategies. It is noted that edge nodes must always have duplicated sensors. As shown
in Fig. 7, for a system with four variables, since the first and fourth nodes are edge nodes, they must have
full sensor duplication. There are two subsets with three nodes, {A,B,C} and {B,C,D} that MMW can
cover. Considering Fig. 7(a), MMW first monitors subset {A,B,C}, where B has only one sensor. Since
D has sensor duplication, there is no need to move MMW and monitor subset {B,C,D}. Alternatively, as
shown in Fig. 7(b), MMW can first monitor subset {B,C,D}, where C has only one sensor. There is no
fundamental difference between these two solutions and they show that by having four variables, instead of
eight sensors, we can perform fault localization with seven sensors.

For a system with five variables, we have three subsets of {A,B,C}, {B,C,D} and {C,D,E}, when MMW
moves in the direction of causality. Since A and E are edge nodes, they must have duplicated sensors. As
schematically shown in Fig. 8(a), when MMW covers subset of {A,B,C}, the node B is a single-sensor.
Moving MMW in the direction of causality to monitor {B,C,D}, since edge node B is not duplicated,
monitoring of this subset is not effective. Then by covering subset {C,D,E}, the node D can be a single-
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Fig. 7. A system with four variables (nodes), (a) node B is single-sensor; (b) node C is single-sensor.

Fig. 8. A system with five variables (nodes), MMW moves from position 1 in (a) to position 2 in (b).

sensor, since it is bordered by two sensor-duplicated nodes. Hence, the MMW is at position 1 at first to check
{A,B,C}, and then moves to position 2 and performs the same action on {C,D,E}, as shown in Fig. 8(b).
The nodes B and D are dominated by two nodes, which have duplicated sensors. Therefore, one sensor is
enough for each of them, and then ACS, provides redundant values. For a five-variable system, eight sensors
are sufficient to perform the fault localization task.

For a system with six variables, the condition is similar to the system with four variables. There are
four subsets of {A,B,C}, {B,C,D}, {C,D,E}, and {D,E,F}. Given the sensor duplication of edge nodes,
covering the subsets {B,C,D} and {D,E,F} by MMW is not effective. Hence, as shown in Fig. 9(a), MMW
starts with subset {A,B,C} and then moves to position 2, to monitor subset {C,D,E}. Since F , as an edge
node, has duplicated sensors, there is no need to move MMW toward that. In this configuration, by having
six variables, ten sensors are adequate to distinguish sensor and system faults.

For a larger number of variables, the process is analogous; they are either similar to a system with five
variables or six variables. When the number of variables in a causal model is odd, the situation is similar
to the system with three or five variables. On the other hand, when the number of variables is even, the
case is similar to the system with four or six variables. By deduction, the methodology remains analogous.
Therefore, we can define the number of required sensors, which can perform the defined fault localization
task. By extending of the pattern of sensor placement, it is evident that the function, which shows the number
of required sensors, depends on whether the number of variables in the causal model is even or odd.

Let us define m as the number of variables to be monitored, and nd as the number of sensor required for
the crisp distinguishing of sensor fault and system fault. By deduction:

if m ∈ odd⇒ nd = 1.5×m+0.5
if m ∈ even⇒ nd = 1.5×m+1

]
⇒ nd > 1.5×m (1)
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Fig. 9. A system with six variables (nodes), MMW moves from position 1 in (a) to position 2 in (b).

It should be noted that for the purpose of control or model-based fault detection, having at least m sensors
is sufficient. The generalization is established on deduction since the methodology works for any number
of variables. This means that if the system can be modeled as serially a connected causal network, the
number of the required sensors to distinguish sensor faults and system faults should be at least greater than
one and half times the number of variables. Without this number of sensors for the serial configuration, full
localization of sensor and system faults is inconceivable.

3.6. Features and Applications of the Method
Basically, any dynamical system amenable to serially causal modeling can be monitored with this method,
and consequently, its sensor and system faults can be distinctly identified. Multi-reservoirs plants for liq-
uids, transmission pipelines with several output valves, interconnected gas containers, etc. are examples of
systems that have several variables to be monitored, and these variables have physical (first principle) rela-
tionships with each other. Therefore, these systems can be modeled as serially connected causal networks
within the framework of the proposed diagnostic method. This approach is capable of detecting faults,
distinguishing between the sensor and system faults, and localizing them.

Once an appropriate number of sensors is determined through the methodology presented here by tracking
the faulty sensor signal based on the approaches similar to that described in [25], it possible to identify the
type of the occurred sensor fault. For instance, statistical analysis of a sensor signal (mean and variance)
may reveal bias, drift or loss of effectiveness of the sensor.

3.7. Extension to Non-Serially Connected Systems
While many real-world systems can be described as serially connected causal models [26], it is noted that
where the model cannot be defined as a serially connected causal network, the method cannot be directly
used. At any branching node of a combined serial-parallel network, the sensors of the corresponding nodes
should be duplicated in order to comply with the task of distinguishing. As shown in Fig. 10(a), the sensors
for the nodes B, C and C̄ are duplicated.

However, if we can find a branch in the causal network that has more than three nodes itself, the concept of
MMW can be used to eliminate the duplication of the sensor for the middle node of this branch. For instance,
in Fig. 10(b), the branch with the subset of {C̄, D̄, Ē} can be considered as a separate serially connected
causal network, hence MMW can cover it. Given this, the node D̄ can be single sensor, while the fault
distinguishing capability is maintained. By considering this argument, the non-serially connected causal
networks (tree and multiply connected) can also be decomposed to serially connected causal networks.
Then the methodology can be applied to each branch individually. Although the number of sensors will not
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Fig. 10. Extension for non-serially connected causal networks.

Fig. 11. A system of three interconnected liquid reservoirs with duplicated height level sensors.

be minimized as before, it can be reduced from strict duplication configuration, but the minimum number of
sensors required is configuration-dependent.

4. APPLICATION FOR INTERCONNECTED MULTI RESERVOIRS

4.1. Modeling of Interconnected Multi Reservoirs with Causal Networks
Multi reservoirs can be modeled by causal networks since the level of liquid in each tank is proportional
to the flow rate from the valves. The flow rate in valves is also a function of the height of the liquid in
the tank before the valve. The serially connected tanks architecture satisfies the serially connected causal
network modeling requirement, which is described in the methodology. The liquid levels in the tanks are
represented by nodes in the causal network, and the valves are the links between the nodes. Now, we
consider a system with a different number of interconnected tanks and apply the methodology. For a system
with one or two tanks, the number of permutations for behavioral modes is not sufficient to reduce the
degree of redundancy from duplication. We consider a system with three interconnected tanks and duplicate
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Fig. 12. Relationships between inputs and outputs.

all height-level measurement sensors as shown in Fig. 11. This configuration will provide a ground to fully
distinguish sensor and system faults.

According to the methodology, the only optimal redundancy mitigation solution is to remove one of
the sensors in tank 2. Therefore, tank 1 and 3 are monitored by duplicated sensors, and tank 2 has only one
sensor. This configuration has a sufficient number of sensors to comply with the conditions of the procedure.
The known control inputs are: Qin(k), R1(k), R2(k), R3(k), which are input flow to the tank 1, and resistance
of valves v1, v2 and v3, respectively. The variables to be monitored and measured are H1(k), H2(k) and
H3(k) at sampling time k. Based on causality, we can define the relationships between the heights of the
tanks as H2 = f (H1) and H3 = g(H2). By having the control inputs and model of the system, the output can
be generated (or estimated), as shown in Fig. 12.

In the process of diagnosis and distinguishing for this system based on the methodology, at each sampling
time, we have five measurements from sensors, corresponding to three variables, as shown in Fig. 12. The
sensor readings are:

• h1
1 and h2

1 corresponding to H1,

• h1
2 corresponding to H2,

• h1
3 and h2

3 corresponding to H3,

where the superscript indicates the sensor that has been used for measurement and subscript corresponds to
the variable. Additionally, we have three equations relating to the physics of the problem. Each equation
computes the variation of height in a tank:

Ḣ1(k) =
Qin

A1
− H1(k)

A1R1(k)
(for tank 1) (2)

Ḣ2(k) =
H1(k)

A2R1(k)
− H2(k)

A1R2(k)
(for tank 2) (3)

Ḣ3(k) =
H2(k)

A3R2(k)
− H3(k)

A3R3(k)
(for tank 3) (4)

Having the initial conditions for these relationships, the measurements can be used to obtain ACS. By
substituting each measurement in the relationships, the ACS from one tank to adjacent tank is determined.
Using five measurements and three equations, six values in total can be derived.

In Table 3, h̄q
p shows the analytical value (ACS) derived from physical relationships. Here, index p denotes

the variable number corresponding to ACS, and q denotes the sensor reading that has been used to generate
ACS. As shown in Table 3:
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Fig. 13. The causal network and sensor configuration for liquid tank process.

Table 3. Variables, sensor readings, and ACS for the three-reservoir system.

• Variable H1: two measurements, one ACS.

• Variable H2: one measurements, four ACS.

• Variable H3: two measurements, one ACS.

This configuration will result in 30 distinct behavioral modes in the system including all state possibilities,
derived from the system model, which are designed off-line similar to Table 2. The logic set contains the
knowledge base parametric rules (e.g., IF symptom AND symptom THEN conclusion). These parametric
values in this configuration are sufficient to construct a logic set. The logic set contains 30 statements, which
represent all distinctive behavioral modes of the process.

4.1.1. Fault emulation
It was shown in Section 3.4.1 that by having measurements from sensors and online generated ACS, a
table similar to Table 4 can be composed. After constructing the logic set, any faults in the valves or
liquid level sensors can be detected and then localized. It is clear that in fault-free case, h1

1 = h2
1 = h̄h1

2
1 ,

h1
2 = h̄h1

1
2 = h̄h2

1
2 = h̄h1

3
2 = h̄h2

3
2 and h1

3 = h2
3 = h̄h1

2
3 . This means that the level measurements and corresponding

ACS for each monitored height are equal. Any discrepancy between these values is indicative of a fault. To
avoid replication, only five scenarios of a single fault in various sensors/components of liquid reservoirs are
given in Table 4. Then in each scenario, the corresponding behavioral mode, which leads to the distinction
of sensor and system faults, is presented. The first two scenarios represent the cases where the system is
faulty (i.e. control valves are leaking). The next three scenarios characterize the cases where sensor faults
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Table 4. Fault scenarios in different components of reservoirs system and corresponding behavioral modes.

are responsible for the discrepancy between measurement and ACS values. Only three sample sensor faults
amongst all permutations of five liquid level sensors in the tanks are given here. The rest of the faults
including multiple faults cases can be similarly diagnosed and localized.

4.1.2. Extension for a larger number of reservoirs
The procedure is extendable for systems with more tanks (and consequently more variables), by traversing
MMW in the direction of causality between liquid levels in the tanks. Similar to the procedure given in
Section 3.5, the methodology can be applied to a process with any number of serially connected tanks. This
configuration can be applied to a parallel but independent variable in the system as well. For example,
if the temperature is also monitored in the tanks, while the number of temperature sensors is greater than
1.5 times the number of tanks (considering the placement configuration), the temperature sensor faults and
system faults (e.g. heaters in the tanks) are both distinguishable.

4.2. Remarks on Presence of Uncertainty
The first principle models (physical relationships) used in this methodology are deterministic. Once we
decide the degree of sensor redundancy for distinguishing sensor and system faults in a deterministic case,
we can incorporate uncertainty models as add-ons to the procedure. The important issue of robustness to
uncertainty is not the subject of the present research and has been addressed by many researchers. Usu-
ally, the uncertainty representations for estimation and detection are extensions of the deterministic model.
Indeed, introducing noise as well as using detection techniques leads to a number of missed and/or false
alarms in the diagnostic procedure. This part is concerned with ’detection’ of faults, whereas establishing
the minimum number of sensors, described in this paper, results in crisp distinguishing of all detected faults.
In other words, if we install the required minimum number of sensors in the configuration, the origin of any
detected fault (sensor or system) can be determined via modified logic set rules. Readers are referred to [10]
for accommodating uncertainty in the methodology.
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5. CONCLUSIONS AND FUTURE WORK

This study sheds light on better understanding the criteria needed for differentiating sensor faults from
system faults in a controlled system, in order to make an attributable diagnostic decision with respect to the
type of the fault. We developed a framework to address this problem for a certain class of systems, which
have serial causality between their variables. In this way, a priori knowledge of the physical relationships
(functional redundancy) between monitored variables is used to check the credibility of existing sensor
observations. By defining the concept of MMW and the logic set the minimum degree of sensor redundancy
has been established. This research is the first step in perspective on effective distinguishing of sensor fault
from system faults. It has opened a new area for exploration in the field of fault diagnosis prospect. There
are many ways to improve the proposed framework. In future works, the methodology can be extended in
the following directions:

1. Investigation and extension of the method for non-serial networks.

2. Theoretical evaluation of distinguishability criteria.
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